International Applied Mechanics

, Volume 39, Issue 6, pp 741–752 | Cite as

Solitary Elastic Waves and Elastic Wavelets

  • C. Cattani
  • Ya. Ya. Rushchitskii
Article

Abstract

A new group of wavelets that have the form of solitary waves and are the solutions of the wave equations for dispersive media is proposed to call elastic wavelets. That this group includes well-known Mexican-hat wavelets is proved. It is proposed to use elastic wavelets to study local features of the profile evolution of a solitary wave in an elastic dispersive medium

solitary wave microstructural theory wavelet application Mexican hat elastic wavelet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. O. Geranin, L. D. Pisarenko, and Ya. Ya. Rushchitskii, Mathematical Aspects of Wave Analysis: 16 Lectures, A Handbook, VPF Ukr INTEI, Kiev (2001).Google Scholar
  2. 2.
    V. O. Geranin, K. D. Pisarenko, and Ya. Ya. Rushchitskii, Wavelet Theory with Elements of Fractal Analysis: 32 Lectures, A Handbook, VPF Ukr INTEI, Kiev (2002).Google Scholar
  3. 3.
    V. P. D'yakonov, Wavelets: From Theory to Practice [in Russian], SOLON-R, Moscow (2002).Google Scholar
  4. 4.
    C. Cattani and Ya. Ya. Rushchitskii, “Plane waves in cubically nonlinear elastic media,” Int. Appl. Mech., 38, No. 11,1361-1365 (2002).Google Scholar
  5. 5.
    L. V. Novikov, Fundamentals of Wavelet Analysis of Signals [in Russian], OOO “Modus +,” St. Petersburg (1999).Google Scholar
  6. 6.
    Ya. Ya. Rushchitskii and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. NAN Ukrainy, Kiev (1997).Google Scholar
  7. 7.
    C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms, Prentice-Hall, New Jersey (1998).Google Scholar
  8. 8.
    C. Cattani and L. Toscano, “Hyperbolic equations in wavelet bases,” Acoust. Bull., 2, No. 3, 3-9 (2000).Google Scholar
  9. 9.
    C. Cattani and G. Matarazzo, “Nonlinear differential equations in wavelet bases,” Acoust. Bull., 2, No. 4, 4-10 (2000).Google Scholar
  10. 10.
    C. Cattani and Ya. Ya. Rushchitskii, “Plane waves in cubically nonlinear elastic media,” Int. Appl. Mech., 38, No. 11,1361-1365 (2002).Google Scholar
  11. 11.
    I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, Pennsylvania (1982).Google Scholar
  12. 12.
    E. Janke, F. Emde, and F. Lösch, Tafeln höherer Funktionen, Teubner Verlaggesellschaft Stuttgart (1960).Google Scholar
  13. 13.
    G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, Boston-Basel-Berlin (1994).Google Scholar
  14. 14.
    J. Kampe de Feriet, R. Campbell, G. Petiau, and T. Vogel, Fonctions de la Physique Mathematique, Centre national de la recherche scientifique, Paris (1957).Google Scholar
  15. 15.
    S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego-New York-London (1999).Google Scholar
  16. 16.
    Y. Meyer, Wavelets. Algorithms and Applications, SIAM, Philadelphia, Pennsylvania (1993).Google Scholar
  17. 17.
    J. J. Rushchitsky, “New solitary waves and their interaction in solid mixtures (granular composites),” ZAMM (special issue for abstracts of GAMM-97 meeting), 53, 6, 663-664 (1997).Google Scholar
  18. 18.
    J. J. Rushchitsky, “Nonlinear interaction of elastic solitary waves in materials,” in: Abstracts of the 3rd European Nonlinear Oscillations Conf., Denmark Technical University, Copenhagen (1999), pp. 36-37.Google Scholar
  19. 19.
    J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52, No. 2, 35-74 (1999).Google Scholar
  20. 20.
    Ya. Ya. Rushchitskii, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586-614 (2000).Google Scholar
  21. 21.
    Ya. Ya. Rushchitskii and C. Cattani, “Generation of the third harmonics by plane waves in Murnaghan materials,” Int. Appl. Mech., 38, No. 12, 1482-1487 (2002).Google Scholar
  22. 22.
    C. Cattani and Ya. Ya. Rushchitskii, “The subharmonic resonance and second harmonic of a plane wave in nonlinearly elastic bodies,” Int. Appl. Mech., 39, No. 1, 93-98 (2003).Google Scholar
  23. 23.
    J. J. Rushchitsky, C. Cattani, and E. V. Terletskaya, “The effect of the characteristic dimension of a microstructural material and the trough length of a solitary wave on its evolution,” Int. Appl. Mech., 39, No. 2, 197-202 (2003).Google Scholar
  24. 24.
    A. Samoilenko, S. Borysenko, C. Cattani, G. Matarazzo, V. Yasinsky, Differential Models: Stability, Inequalities, and Estimates [in Russian], Naukova Dumka, Kiev (2001).Google Scholar
  25. 25.
    A. Samoilenko, S. Borysenko, C. Cattani, and V. Yasinsky, Differential Models: Construction Representations, and Applications [in Russian], Naukova Dumka, Kiev (2001).Google Scholar
  26. 26.
    G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York (1974).Google Scholar
  27. 27.
    E. T. Whittaker and G. N. Watson, A Course of Modem Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th ed., Cambridge Univ. Press, Cambridge (1927).Google Scholar
  28. 28.
    P. A. Wojtaszczyk, A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts, Cambridge Univ. Press, Cambridge (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • C. Cattani
    • 1
  • Ya. Ya. Rushchitskii
    • 2
  1. 1.Universita di Roma “La Sapienza,”RomeItaly
  2. 2.National Academy of Sciences of UkraineS. P. Timoshenko Institute of MechanicsKiev

Personalised recommendations