Biomedical Microdevices

, Volume 5, Issue 3, pp 207–215

Platelet Function Analyzer: Shear Activation of Platelets in Microchannels

  • Ameya S. Kantak
  • Bruce K. Gale
  • Yuri Lvov
  • Steven A. Jones


Platelet function is suggestive of pathological conditions in cardiovascular diseases. With current insufficient prognostic devices, the need exists for a device to assess complete platelet function. This work presents a preliminary microfluidic device for such analysis based on platelet adhesion under shear flow conditions. In this novel device, polydimethylsiloxane (PDMS) microchannels were coated using a layer-by-layer self-assembly technique to provide controlled nanometer-thick layers of fibrinogen. Anticoagulated platelet rich plasma labeled with a fluorescein isothiocynate-tagged anti-glycoprotein IIb/IIIa-antibody and acridine orange was passed through these micro-channels at various time-averaged shear rate values. Fluorescence assays confirmed shear-dependent adhesion of platelets in the microchannels. Control experiments showed that the extent of adhesion on bare PDMS surfaces was less than on the surfaces coated with fibrinogen at similar shear rates. Fluorescent microscopy demonstrated that the extent of platelet adhesion to the fibrinogen substrate depended on shear rate. The extent of adhesion was modeled as a third order polynomial in shear rate.

microfluidics self-assembly platelet activation shear fibrinogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Ai, Y. Lvov, D. Mills, M. Jennings, J. Alexander, and S. Jones, Cell Biochemistry and Biophysics, November (2002).Google Scholar
  2. C. Brown, L. Leverett, C. Lewis, C. Alfrey, and D. Hellums, J Lab Clin Med 86, 462-471 (1975).Google Scholar
  3. J. Butler, Thromb Res 68, 205-206 (1992).Google Scholar
  4. K. Clemetson, Platelet Membrane Receptors: Molecular Biology, Immunology, Biochemistry, and Pathology (Alan R. Liss, Inc., 1988), pp. 33-75.Google Scholar
  5. S. Endenburg, R. Hantgan, L. Lindeboom-Blokzijl, H. Lankhof, W. Jerome, J. Lewis, J. Sixma, and P. de Groot, Blood 86, issue 11, 4158-4165 (1995).Google Scholar
  6. S. Endenburg, L. Lindeboom-Blokzijl, J. Zwaginga, J. Sixma, and P. de Groot, Arteriosclerosis, Thrombosis, and Vascular Biology 16, 633-638 (1996).Google Scholar
  7. S. Hansen and L. Harker, Biomaterial Science, edited by B. Rattner, A. Hoffmann, F. Schoen, and J. Lemons (Academic Press, San Diego, 1996), chapter 4, pp. 193-199.Google Scholar
  8. R. Faull, X. Du, and M. Ginsberg, Methods in Enzymology 245, 183-194 (1994).Google Scholar
  9. E. Grabowski, L. Friedman, and E. Leonard, Ind Eng Chem Fundam 11, 224-232 (1972).Google Scholar
  10. L. Harker, Cerebrovascular Diseases 8sup. 5, 8-18 (1998).Google Scholar
  11. C. Herd and C. Page, Immunopharmacology of Platelets, edited by M. Joseph (Harcourt Brace and Company, London, 1995).Google Scholar
  12. T. Hung, R. Hochmuth, J. Joist, and S. Sutera, Trans Amer Sopc Artif Int Organs 22, 285-291 (1976).Google Scholar
  13. H. Knobler, N. Savion, B. Shenkman, S. Kotev-Emeth, and D. Varon, Thromb Res 90, 181-190 (1998).Google Scholar
  14. M. Kroll and A. Schafer, Immunopharmacology of Platelets, edited by M. Joseph (Academic Press, London, 1995).Google Scholar
  15. Y. Lvov, K. Ariga, and T. Kunitake, Colloids and Surfaces A 146, 337-344 (1999).Google Scholar
  16. Y. Lvov and H. Mohwald (eds.), Protein Architecture: Interfacing Molecular Assembly and Immobilization Biotechnology (M. Dekker Publishers, NY, 2000) pp. 1-396.Google Scholar
  17. T. Meade, Ann Epidemiol 2, 353-364 (1992).Google Scholar
  18. M. Moritz, S. Sutera, and J. Joist, Thrombosis Research 22, 445-455 (1981).Google Scholar
  19. N. Nicholson, S. Panzer-Knodle, N. Haas, B. Taite, J. Szalony, J. Page, L. Fiegen, D. Lansky, and A. Salyers, Am Heart J. 135:S, 170-178 (1998).Google Scholar
  20. J. Ramstack, L. Zuckerman, and L. Mockros, J Biomechanics 12, 113-125 (1979).Google Scholar
  21. C. Reininger, Thromb Res 82, 523-532 (1996).Google Scholar
  22. G. Rock, P. Tittley, and A. Pipe, Clin J Sport Med 7, 94-99 (1997).Google Scholar
  23. R. Rodgers and J. Levin, Seminars in Thrombosis and Hemostasis 16, 1-20 (1990).Google Scholar
  24. R. Ross, J. Glomset, B. Kariya, and L. Haker, Proc Natl Acad Sci 71, 1207-1210 (1974).Google Scholar
  25. Z. Ruggeri and J. Ware, FASEB Journal 7, 308-316, February (1993).Google Scholar
  26. K. Sakariassen, P. Holme, U. Orvim, R. Barstad, N. Solum, and F. Brosstad, Thrombosis Research 92, S33-S41 (1998).Google Scholar
  27. M. Schindler, S. Gatt, P. Isert, D. Morgans, and A. Cheung, Anaesth Int Care 18, 169-174 (1990).Google Scholar
  28. J. Sixma and P. de Groot, Mayo Clin. Proc. 66, 628-633 (1991).Google Scholar
  29. D. Steed, Surg Clin North Am 77, 575-586, (1997).Google Scholar
  30. R. Takahashi, N. Sekine, and T. Nakatake, Blood 93(6), 1951-1958 (1999).Google Scholar
  31. S. Usami, H. Chen, and Y. Zhao, Ann. of Biomed. Engg. 21, 77-83 (1993).Google Scholar
  32. C. Wagner, M. Mascelli, D. Neblock, H. Weisman, B. Coller, and R. Jordan, Blood 88(3), 907-914 (1996).Google Scholar
  33. M. Zahavi, J. Zahavi, R. Schafer, E. Firsterer, and S. Laniado, Thrombosis and Haemostasis 62, 840-845 (1989).Google Scholar
  34. T. Zaidi, L. McIntire, D. Farrell, and P. Thiagarajan, Blood 88(8), 2967-2972 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ameya S. Kantak
    • 1
    • 2
    • 3
  • Bruce K. Gale
    • 1
  • Yuri Lvov
    • 2
  • Steven A. Jones
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Institute for MicromanufacturingLouisiana Tech. UniversityRustonUSA
  3. 3.Department of Biomedical EngineeringLouisiana Tech. UniversityRustonUSA

Personalised recommendations