Dark Dune Spots: Possible Biomarkers on Mars?

  • Tibor Gánti
  • András Horváth
  • Szaniszló Bérczi
  • Albert Gesztesi
  • Eörs SzathmáryEmail author


Dark Dune Spots (DDSs) are transitional geomorphologic formations in the frost-covered polar regions of Mars. Our analysis of the transformations and arrangements of subsequent stages of DDSs into time sequence revealed their: (i) hole-like characteristics,(ii) development and formation from the bottom of the frosted layer till the disapperance of the latter, (iii) repeated (seasonal and annual) appearance in a pattern of multiple DDSs on the surface, and (iv) probable origin. We focused our studies on a model in which DDSs were interpreted as objects triggered by biological activity involvedin the frosting and melting processes. We discuss two competing interpretations of DDSs: development by defrosting alone, and by defrosting and melting enhanced by the activity of Martian Surface Organisms (MSOs). MSOs are hypothetical Martian photosynthetic surface organisms thought to absorb sunlight. As a result they warm up by late winter and melt the ice around them, whereby their growth and reproduction become possible. The ice cover above the liquid water lens harbouring the MSOs provides excellent heat and UV insulation, preventsfast evaporation, and sustains basic living conditions until the ice cover exists. When the frost cover disappears MSOs go to a dormant, desiccated state. We propose further studies to be carried out by orbiters and landers travelling to Mars and by analysis of partial analogues on earth.

astrobiology Dark Dune Spots (DDSs) frosting-defrosting geomorphologic analysis of DDSs life on Mars Mars Global Surveyor Mars Odyssey Martian Surface Organisms (MSOs) Southern Polar Region of Mars water ice and liquid water on Mars 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albee, A. L., Arvidson, R. E., Palluconi, F. and Thorpe, T.: 2001, Overview of the Mars Global Surveyor Mission, J. Geophys. Res. 106(E10), 23,291–23,316.Google Scholar
  2. Asgarani, E. et al.: 2000, Purification and Characterization of a Novel DNA Repair Enzyme from the Extremely Radioresistant Bacterium Rubrobacter radiotolerans, J. Radiat. Res. (Tokyo) 41, 19–34.Google Scholar
  3. Battista, J. R.: 1997, Against all Odds: The Survival Strategies of Deinococcus radiodurans, Annu. Rev. Microbiol. 51, 203–224.Google Scholar
  4. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A. and Grassineau, N. V.: 2002, Questioning the Evidence for Earth's Oldest Fossils. Nature 416, 76–81.Google Scholar
  5. Boynton, W. V., Feldman, W. C., Squyres, S. W., Prettyman, T., Brückner, J., Evans, L. G., Reedy, R. C., Starr, R., Arnold, J. R., Drake, D. M., Englert, P. A. J., Metzger A. E., Mitrofanov, Igor, Trombka, J. J., d'Uston, C., Wänke, H., Gasnault, O., Hamara, D. K., Janes, D. M., Marcialis, R. L., Maurice, S., Mikheeva, I., Taylor, G. J., Tokar, R. and Shinohara, C.: 2002, Distribution of Hydrogen in the Near-Surface of Mars: Evidence for Subsurface Ice Deposits, Science 297, 81–85. Published online 30 May 2002; 10.1126/science.1073722.Google Scholar
  6. Bridges, N. T., Herkenhoff, K. E., Titus, T. N. and Kieffer, H. H.: 2001, Ephemeral Dark Spots Associated with Martian Gullies, Lunar Planet. Sci. XXXII, #2126.Google Scholar
  7. Cabrol, N. A., Wynn-Williams, D. D., Crawford, D. A. and Grin, E. A.: 2001, Recent Aqueous Environments in Impact Craters and the Astrobiological Exploration of Mars, Lunar Planet. Sci. XXXII, #1251.Google Scholar
  8. Carr, M. H.: 1996, Water on Mars, Oxford University Press.Google Scholar
  9. Cavalier-Smith, T.: 2002, The Neomuran Origin of Archaebacteria: The Negibacterial Root of the Universal Tree and Bacterial Megaclassification, Int. J. Syst. Evol. Microbiol. 52, 7–76.Google Scholar
  10. Cockell, C. S.: 1998, The Biological Effects of High Ultraviolet Radiation on Early Earth - A Theoretical Evaluation, J. Theor. Biol. 193, 717–729.Google Scholar
  11. Cockell, C. S., Wynn-Williams, D. D. and Horneck, G.: 2001, Ultraviolet Protection on a Snowball Earth, Lunar Planet. Sci. XXXII, #1328.Google Scholar
  12. Cutts, J. A. and Smith, R. S. U.: 1973, Eolian Deposits and Dunes on Mars, J. Geophys. Res. 78(20), 4139–4154.Google Scholar
  13. Davies, P.: 1998, The Fifth Miracle. The Search for the Origin of Life, Orion Productions, Penguin Press.Google Scholar
  14. Edgett, K. S. and Malin, M. C.: 1999, MGS MOC the First Year: Sedimentary Materials and Relationships, Lunar Planet. Sci. XXX, #1029.Google Scholar
  15. Edgett, K. S., Supulver, K. D. and Malin, M. C.: 2000, Spring Defrosting of Martian Polar Regions: Mars Global Surveyor MOC and TES Monitoring of the Richardson Crater Dune Field, 1999-2000, Mars Polar Sci. Explor. II, #4041.Google Scholar
  16. Friedmann, E. I. and Thistle, A. B. (eds): 1993, Antarctic Microbiology, John Wiley & Sons.Google Scholar
  17. Feldman, W. C., Boynton, W. V., Tokar, R. L., Prettyman, T. H., Gasnault, O., Squyres, S.W., Elphic, R. C., Lawrence, D. J., Lawson, S. L., Maurice, S., McKinney, G. W., Moore, K. R. and Reedy, R. C.: 2002, Global Distribution of Neutrons from Mars: Results from Mars Odyssey, Science 297, 75–78. Published online 30 May 2002; 10.1126/science. 1073541.Google Scholar
  18. Gánti, T.: 1997, Biogenesis Itself, J. Theor. Biol. 187, 583–593.Google Scholar
  19. Gánti, T., Horváth, A., Gesztesi, A., Bérczi, Sz. and Szathmáry, E.: 2002, Defrosting and Melting, not Defrosting Alone, Lunar Planet. Sci. XXXIII, #1221.Google Scholar
  20. Gánti, T.: 2003, The Principle of Life, Oxford University Press (in press).Google Scholar
  21. Gupta, R. S., Mukhtar, T. and Singh, B.: 1999, Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus auranticus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis, Mol. Microbiol. 32, 893–906.Google Scholar
  22. Gupta, R. S.: 2000, The Natural Evolutionary Relationships among the Prokaryotes, Crit. Rev. Microbiol. 26, 111–131.Google Scholar
  23. Hill, D. R., Hladun, S. L., Scherer, S. and Potts, M.: 1997, Water Stress Proteins of Nostoc commune (Cyanobacteria) are Secreted with UV-A/B-absorbing Pigments and Associate with 1,4-β-Dxylanxylanohydrolase Activities, J. Biol. Chem. 269, 7726–7734.Google Scholar
  24. Hoffman, N.: 2000, White Mars: A New Model for Mars' Surface and Atmosphere Based on CO2, Icarus 146, 326–342.Google Scholar
  25. Horneck, G.: 2000, The Microbial World and the Case for Mars, Planet. Space Sci. 48, 1053–1063.Google Scholar
  26. Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. and Baumstark-Khan, C.: 2001, Protection of Bacterial Spores in Space, a Contribution to the Discussion on Panspermia, Orig. Life Evol. Biosphere 31, 527–547.Google Scholar
  27. Horváth, A., Gánti, T., Gesztesi A, Bérczi, Sz. and Szathmáry, E.: 2001, Probable Evidences of Recent Biological Activity on Mars: Appearance and Growing of Dark Dune Spots in the South Polar Region, Lunar Planet Sci. XXXII, #1543, http: // Scholar
  28. Horváth, A., Gánti, T., Gesztesi, A., Bérczi, Sz. and Szathmáry, E.: 2002a, Morphological Analysis of the Dark Dune Spots on Mars: New Aspects in Biological Interpretation, Lunar Planet. Sci. XXXIII, #1108.Google Scholar
  29. Horváth, A., Bérczi, Sz., Gánti, T., Gesztesi, A. and Szathmáry, E.: 2002b, The 'Inca City' Region of Mars: Test Field for Dark Dune Spots Origin, Lunar Planet. Sci. XXXIII, #1109.Google Scholar
  30. Horváth, A., Gánti, T., Gesztesi, A., Bérczi, Sz. and Szathmáry, E.: 2002c, Probable Evidence of Recent Life on Mars. Proceedings of RAS IK30, Moscow (in press, in Russian).Google Scholar
  31. Horváth, A., Gánti, T., Bérczi, Sz., Gesztesi, A. and Szathmáry, E.: 2002d, 'Biogenic' Dark Dune Spots on Mars and Probable Antarctic Analogues, in Antarctic Meteorites XXVII, National Institute of Polar Research, Tokyo, pp. 37–39.Google Scholar
  32. Howard, A. D.: 2000, The Role of Eolian Processes in Forming Surface Features of theMartian Polar Layered Deposits, Icarus 144, 267–288.Google Scholar
  33. Lindner, B. L. and Jakosky, B. M.: 1985, Martian Atmospheric Photochemistry and Composition during Periods of Low Obliquity, J. Geophys. Res. 90(A4), 3435.Google Scholar
  34. Malin, M. C. and Edgett, K. S.: 2000a, Early Defrosting of the 1999 South Polar Seasonal Frost Cap: Evidence of Interannual Climate Change? Lunar Planet. Sci. XXXI, #1052.Google Scholar
  35. Malin, M. C. and Edgett, K. S.: 2000b, Frosting and Defrosting of Martian Polar Dunes, Lunar Planet. Sci. XXXI, #1056.Google Scholar
  36. Malin, M. C. and Edgett, K. S.: 2000c, The Geomorphic Expression of North versus South Polar Layered Outcrops on Mars at Meter to Decameter Scales, Mars Polar Sci. Explor. II, #4042.Google Scholar
  37. Malin, M. C. and Edgett, K. S.: 2000d, Evidence for Recent Groundwater Seepage and Surface Runoff on Mars, Science 288, 2330–2335.Google Scholar
  38. Malin, M. C. and Edgett, K. S.: 2001, The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission, J. Geophys. Res. 106 E10, 23,429–23,570.Google Scholar
  39. Mangold, N., Costard, F., Forget, F. and Peulvast, J. P.: 2002, Narrow Gullies over High Sand Dunes on Mars: Evidence for Flows Triggered by Liquid Water, Lunar Planet Sci. XXXIII, #1215.Google Scholar
  40. Mitrofanov, I., Anfimov, D., Kozyrev, A., Litvak, M., Sanin, A., Tret'yakov, V., Krylov, A., Shvetsov, V., Boynton, W., Shinohara, C., Hamara, D. and Saunders R. S.: 2002, Maps of Subsurface Hydrogen from the Hight-Energy Neutron Detector Mars Odyssey, Science 297, 78–81. Published online 30 May 2002; 10.1126/science.1073616.Google Scholar
  41. Murray, B. C., Sonderblom, L. A., Sharp, R. P. and Cutts, J. A.: 1971, The Surface of Mars, 1, Cratered Terrains, J. Geophys. Res. 76, 313.Google Scholar
  42. Ness, P. K. and Orme, G. M.: 2001, The Martian Inorganic Spider-Ravine Models: Explanation of Plant like Features on Mars - And Organic Life-on-Mars Alternatives, http: // (, Scholar
  43. Ness, P. K. and Orme, G. M.: 2002, Spider-RavineModels and Plant-like Features on Mars - Possible Geophysical and Biogeophysical Modes of Origin, J. Brit. Interplanet. Soc., 55, 85–109.Google Scholar
  44. Pearl, H.W. and Priscu, J. C.: 1998, Microbial Phototrophic, Heterotrophic, and Diazotrophic Activities Associated with Aggregates in the Permanent Ice Cover of Lake Bonney, Antarctica, Microb. Ecol. 36, 221–230.Google Scholar
  45. Pershin, S. M.: 2000, COSPAR 2000 Abstract No. B-04-0008.Google Scholar
  46. Pierson, B. K.: 1994, 'The Emergence, Diversification, and Role of Photosynthetic Bacteria', in S. Bengtson (ed.), Early Life on Earth, Nobel Symposium, 84, Columbia University Press, New York, pp. 161–180.Google Scholar
  47. Priscu, J. C. et al.: 1998, Perennial Antarctic Lake Ice: An Oasis for Life in a Polar Desert, Science 280, 2095–2098.Google Scholar
  48. Reiss, D. and Jaumann, R.: 2002, Spring Defrosting in the Russel Crater Dune Field - Recent Surface Runoff within the Last Martian Year? Lunar Planet. Sci. XXXIII, #2013.Google Scholar
  49. Rothschild, L. J. and Cockell, C. S.: 1999, Radiation: Microbial Evolution, Ecology, and Relevance to Mars Missions, Mut. Res. 430, 281–291.Google Scholar
  50. Supulver, K. D., Edgett, K. S. and Malin, M. C.: 2001, Seasonal Changes in Frost Cover in the Martian South Polar Region: Mars Global Surveyor Moc and Tes Monitoring of the Richardson Crater Dune Field, Lunar Planet. Sci. XXXII, #1966.Google Scholar
  51. Skidmore, M. L., Foght, J. M. and Sharp, M. J.: 2000, Microbial Life Beneath a High Arctic Glacier, Appl. Env. Microbiol. 66, 3214–3220.Google Scholar
  52. Smith, D. E., Zuber, M. T. and Neumann G. A.: 2001, Seasonal Variations of Snow Depth on Mars, Science, 294, 2141–2146.Google Scholar
  53. Thomas, P. and Veverka, J.: 1986, Red/violet Contrast Reversal on Mars: Significance for Eolian Sediments, Icarus 66, 39–55.Google Scholar
  54. Thomas, P. and Weitz, C.: 1989, Sand Dune Materials and Polar Layered Deposits on Mars, Icarus 81, 185–215.Google Scholar
  55. Thomas, P., Squyres, S., Herkenhoff, K., Howard, A. and Murray, B.: 1992, 'Polar Deposits of Mars', in H. H. Kieffer, B. M. Jakosky, C. W. Snyder and M. S. Matthews (eds), Mars, University of Arizona Press, Tucson, AZ, pp. 767–795.Google Scholar
  56. Weiss, B. P. et al.: 2000, A Low Temperature Transfer of ALH84001 from Mars to Earth, Science 290, 791–795.Google Scholar
  57. Wynn-Williams, D. D., Edwards, H. G. M. and Newton, E. M.: 2000, Raman Spectroscopy of Microhabitats and Microbial Communities: Antarctic Deserts Mars Analogues, Lunar Planet. Sci. XXXI, #1015.Google Scholar
  58. Wynn-Williams, D. D. and Edwards, H. G. M.: 2000, Proximal Analysis of Regolith Habitats and Protective Biomolecules In Situ by Laser Raman Spectroscopy: Overview of Terrestrial Antarctic Habitats and Mars Analogs, Icarus 144, 486–503.Google Scholar
  59. Yen, A. S., Kim, S. S., Hecht, M. H., Frant, M. S. and Murray, B.: 2000, Evidence that the Reactivity of the Martian Soil is Due to Superoxide Ions, Science 289 1909–1912.Google Scholar
  60. Zolotarev, Morozov and Smirnova (eds): 1984, Optical Constants of Natural and Technical Mediums, Chemistry, Moscow (in Russian).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Tibor Gánti
    • 1
  • András Horváth
    • 2
    • 3
  • Szaniszló Bérczi
    • 4
  • Albert Gesztesi
    • 5
  • Eörs Szathmáry
    • 1
    • 4
    Email author
  1. 1.Collegium Budapest (Institute for Advanced Study)BudapestHungary
  2. 2.Budapest Planetarium of Society for Dissemination of Scientific KnowledgeBudapestHungary
  3. 3.Konkoly ObservatoryBudapestHungary
  4. 4.Eötvös UniversityBudapestHungary
  5. 5.Budapest Planetarium of Society for Dissemination of Scientific KnowledgeBudapestHungary

Personalised recommendations