Journal of Dynamical and Control Systems

, Volume 9, Issue 4, pp 531–547 | Cite as

Normal Forms of Germs of Contact Sub-Lorentzian Structures on R3. Differentiability of the Sub-Lorentzian Distance Function

  • Marek Grochowski


The aim of this paper is to construct certain normal forms for germs of contract sub-Lorentzian metrics in R3. Using them we show that there are regions in which longest curves are necessarily timelike, and where the local sub-Lorentzian distance function is smooth. By the way, we compute the null conjugate locus of a point.

Sub-Lorentzian manifolds geodesics contact distributions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Agrachev, El-H. Chakir El-A., and J. P. Gauthier, Sub-Riemannian metrics on ℝ3. Proc. Conf. Canad. Math. Soc. 25 (1998).Google Scholar
  2. 2.
    El.-H. Alaoui, J.-P. Gauthier, and I. Kupka, Small sub-Riemannian balls in ℝ3. J. Dynam. Control Systems 2 (1996), No. 3, 359-421.Google Scholar
  3. 3.
    J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian geometry. Marcel Dekker (1996).Google Scholar
  4. 4.
    M. Golubitsky and V. Guillemin, Stable mappings and their singularities. Spinger-Verlag, New York (1973).Google Scholar
  5. 5.
    M. Grochowski, Differential properties of the sub-Riemannian distance function. Bull. Polish Acad. Sci. 50 (2002), No. 1.Google Scholar
  6. 6.
    M. Grochowski, Geodesics in the sub-Lorentzian geometry. Bull. Polish Acad. Sci. 50 (2002), No. 2.Google Scholar
  7. 7.
    M. Grochowski, On the Heisenberg sub-Lorentzian metric on ℝ3. Preprint Singularity Theory Seminar, S. Janeczko (ed.), Faculty of Mathemathics and Information Sciences, Warsaw University of Technology (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Marek Grochowski
    • 1
  1. 1.Faculty of MathematicsCardinal Stefan Wyszyński University in WarsawWarszawaPoland

Personalised recommendations