Behavior Genetics

, Volume 27, Issue 4, pp 373–387

Heritable Variation in Food Preferences and Their Contribution to Obesity

  • Danielle R. Reed
  • Alexander A. Bachmanov
  • Gary K. Beauchamp
  • Michael G. Tordoff
  • R. Arlen Price


What an animal chooses to eat can either induce or retard the development of obesity; this review summarizes what is known about the genetic determinants of nutrient selection and its impact on obesity in humans and rodents. The selection of macronutrients in the diet appears to be, in part, heritable. Genes that mediate the consumption of sweet-tasting carbohydrate sources have been mapped and are being isolated and characterized. Excessive dietary fat intake is strongly tied to obesity, and several studies suggest that a preference for fat and the resulting obesity are partially genetically determined. Identifying genes involved in the excess consumption of dietary fat will be an important key to our understanding of the genetic disposition toward common dietary obesity.

Obesity food preferences dietary fat intake saccharin sweet taste 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, D. B. (1994). Methodological issues in obesity research: Examples from biometrical genetics. In Vanltallie, T. B., and Simopoulos, A. P. (eds.), Obesity. New Directions in Assessment and Management, Charles Press, Philadelphia, pp. 122–132.Google Scholar
  2. Anliker, J. A., Bartoshuk, L., Ferris, A. M., and Hooks, L. D. (1991). Children's food preferences and genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP). Am. J. Clin. Nutr. 54:316–320.Google Scholar
  3. Austin, M. A., King, M.-C., Bawol, R. D., Hulley, S. B., and Friedman, G. D. (1987). Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences. Am. J. Epidemiol. 125:308–318.Google Scholar
  4. Bachmanov, A. A., Reed, D. R., Ninomiya, Y., Inoue, M., Tordoff, M. G., Price, R. A., and Beachamp, G. K. (1996). Genetics of sucrose intake in the mouse. Chem. Senses 21:575.Google Scholar
  5. Bacon, A. W., Miles, J. S., and Schiffman, S. S. (1994). Effect of race on perception of fat alone and in combination with sugar. Physiol. Behav. 55:603–606.Google Scholar
  6. Bartoshuk, L. M. (1979). Bitter taste of saccharin related to the genetic ability to taste the bitter substance 6-n-propylthiouracil. Science 205:934–935.Google Scholar
  7. Bartoshuk, L. M., Rifkin, B., Marks, L. E., and Hooper, J. E. (1988). Bitterness of KCI and benzoate: Related to genetic status for sensitivity to PTC/PROP. Chem. Senses 13:517–528.Google Scholar
  8. Bartoshuk, L. M., Dabrila, G. M., Duffy, V. B., Lucchina, L. A., and Snyder, D. J. (1996). PROP tasting, the trigeminal nerve and sex: Some new thoughts on oral irritation and fat. In Mechanisms of Food Intake and Specific Appetites, VI Symphagium Benjamin Franklin-Layfayette, Chateau de la Napoule, Alpes-Maritimes, France, June.Google Scholar
  9. Beauchamp, G. K., and Cowart, B. J. (1987). Development of sweet taste. In Dobbing, J. (ed.), Sweetness, Springer-Verlag, London, pp. 127–140.Google Scholar
  10. Belknap, J. K., Crabbe, J. C., Plomin, R., McClearn, G. E., Sampson, K. E., O'Toole, L. A., and Gora-Maslak, G. (1992). Single-locus control of saccharin intake in BXD/Ty recombinant inbred (RI) mice: Some methodological implications for RI strain analysis. Behav. Genet. 22:81–100.Google Scholar
  11. Birch, L. L. (1980). The relationship between children's food preferences and those of their parents. J. Nutr. Educ. 12:14–18.Google Scholar
  12. Blatt, C., and DePamphilis, M. L. (1993). Striking homology between the mouse and human transcriptional enhancer factor-1 (TEF-1). Nucleic Acids Res. 21:747–748.Google Scholar
  13. Blizard, D. A., Gudas, E. P., and Frank, M. E. (1996). Genemapping of sweet and bitter tastants in Mus musculus. Chem. Senses 21:579.Google Scholar
  14. Bultman, S. J., Michaud, E. J., and Woychik, R. P. (1992). Molecular characterization of the mouse agouti locus. Cell 71:1195–1204.Google Scholar
  15. Burt, J. V., and Hertzler, A. A. (1978). Parental influence on the child's food preference. J. Nutr. Educ. 10:127–128.Google Scholar
  16. Capeless, C. G., and Whitney, G. (1995). The genetic basis of preference for sweet substances among inbred strains of mice: Preference ratio phenotypes and the alleles of the Sac and dpa loci. Chem. Senses 20:291–298.Google Scholar
  17. Capretta, P. J. (1970). Saccharin and saccharin-glucose ingestion in two inbred strains of mus musculus. Psychon. Sci. 21:133–135.Google Scholar
  18. Carpenter, K. J., and Mayer, J. (1958). Physiologic observations on yellow obesity in the mouse. Am. J. Physiol. 193:499–504.Google Scholar
  19. Cavalli-Sforza, L. L. (1990). Cultural transmission and nutrition. In Simopoulos, A. P., and Childs, B. (eds.), Genetic Variation and Nutrition, Karger, Basel, pp. 35–48.Google Scholar
  20. Castonguay, T. W. (1991). Glucocorticoids as modulators in the control of feeding. Brain Res. Bull. 27:423–428.Google Scholar
  21. Castonguay, T. W., Hartman, W. J., Fitzpatrick, E. A., and Stern, J. S. (1982). Dietary self-selection and the Zucker rat. J. Nutr. 112:796–800.Google Scholar
  22. Castonguay, T. W., Burdick, S. L., Guzman, M. A., Collier, G. H., and Stern, J. S. (1984). Self-selection and the obese Zucker rat: The effect of dietary fat dilution. Physiol. Behav. 33:119–126.Google Scholar
  23. Castonguay, T. W., Dallman, M. F., and Stern, J. S. (1986). Some metabolic and behavioral effects of adrenalectomy on obese Zucker rats. Am. J. Physiol. 251:R923-R933.Google Scholar
  24. Chua, S., Jr., Chung, W. K., Wu-Peng, S., Zhang, Y., Liu, S.-M., Tartaglia, L., and Leibel, R. L. (1996). Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (Leptin) receptor. Science 271:994–996.Google Scholar
  25. Coleman, D. L., and Eicher, E. M. (1990). Fat (fat) and Tubby (tub): Two autosomal recessive mutations causing obesity syndromes in the mouse. J. Hered. 81:424–427.Google Scholar
  26. Dabrilla, G. M., Bartoshuk, L. M., and Duffy, V. B. (1995). Preliminary findings of genetic taste status association with fat intake and body mass index in adults. Presented at the 78th Annual Meeting of the American Dietetic Association, Chicago, IL, Oct. 30.Google Scholar
  27. De Castro, J. M. (1993). Genetic influences on daily intake and meal patterns of humans. Physiol. Behav. 53:777–782.Google Scholar
  28. Desor, J., Greene, L., and Maller, O. (1975). Preferences for sweet and salty in 9-to 15-year old and adult humans. Science 190:686–687.Google Scholar
  29. Dess, N. K., and Minor, T. R. (1996). Taste and emotionality in rats selectively bred for high versus low saccharin intake. Anim. Learn. Behav. 24:105–115.Google Scholar
  30. Drewnowski, A. (1990). Genetics of taste and smell. In Simopoulos, A. P., and Childs, B. (eds.), Genetic Variation and Nutrition, Karger, Basel, pp. 194–208.Google Scholar
  31. Drewnowski, A. (1992). Sensory preferences and fat consumption in obesity and eating disorders. In Mela, D. (ed.), Dietary Fats: Determinants of Preference, Selection and Consumption, Elsevier Science, Essex, England, pp. 59–77.Google Scholar
  32. Drewnowski, A., and Rock, C. L. (1995). The influence of genetic taste markers on food acceptance. Am. J. Clin. Nutr. 62:506–511.Google Scholar
  33. Drewnowski, A., Brunzell, J. D., Sande, K., Iverius, P. H., and Greenwood, M. R. C. (1985). Sweet tooth reconsidered: Taste responsiveness in human obesity. Physiol. Behav. 35:617–622.Google Scholar
  34. Drewnowski, A., Kurth, C. L., and Rahaim, J. E. (1991). Taste preferences in human obesity: Environmental and familial factors. Am. J. Clin. Nutr. 54:635–641.Google Scholar
  35. Drewnowski, A., Henderson, S. A., and Shore, A. B. (1997). Genetic sensitivity to 6-n-propylthioruracil (PROP) and hedonic responses to bitter and sweet taste. Chem. Senses 22:27–37.Google Scholar
  36. Duffy, V. B., Weingarten, H. P., and Bartoshuk, L. M. (1995). Preference for sweet and fat foods in young adults associated with PROP (6-n-propythiouracil) genetic taste status and sex. Chem. Senses 20(6):688 (abstract).Google Scholar
  37. Enns, M. P., and Grinker, J. A. (1983). Dietary self-selection and meal patterns of obese and lean Zucker rats. Appetite 4:281–293.Google Scholar
  38. Fabsitz, R. R., Garrison, R. J., Feinleib, M., and Hjortland, M. (1978). A twin analysis of dietary intake: Evidence for a need to control for possible environmental differences in MZ and DZ twins. Behav. Genet. 8:15–24.Google Scholar
  39. Falciglia, G. A., and Norton, P. A. (1994). Evidence for a genetic influence on preference for some foods. J. Am. Diet Assoc. 94:154–158.Google Scholar
  40. Faurion, A. (1987). Physiology of the sweet taste. In Autrum, H., Ottoson, D., Perl, E. R., Schmidt, R. F., Shimazu, H., and Willis, W. D. (eds.), Progress in Sensory Physiology 8, Springer-Verlag, Heidelberg.Google Scholar
  41. Faust, J. (1974). A twin study of personal preferences. J. Biosoc. Sci. 6:75–91.Google Scholar
  42. Fenton, P. F., and Dowling, M. T. (1953). Studies on obesity I. Nutritional obesity in mice. J. Nutr. 49:319–331.Google Scholar
  43. Fischer, R., and Griffin, F. (1961). Quinine dimorphism among “non-tasters” of 6-n-propylthiouracil. Experientia 17:1–7.Google Scholar
  44. Fischer, R., Griffin, F., England, S., and Garn, S. M. (1961). Taste thresholds and food dislikes. Nature 191:1328.Google Scholar
  45. Forrai, G., and Bankovi, G. (1984). Taste perception for phenylthiocarbamide and food choice—A Hungarian twin study. Acta Physiol. Hung. 64:33–40.Google Scholar
  46. Fuller, J. L. (1974). Single-locus control of saccharin preference in mice. J. Hered. 65:33–36.Google Scholar
  47. Fuller, J. L., and Jacoby, G. A. (1955). Central and sensory control of food intake in genetically obese mice. Am. J. Physiol. 183:279–283.Google Scholar
  48. Gent, J. F., and Bartoshuk, L. M. (1983). Sweetness of sucrose, neohesperidin dihydrochalcone, and saccharin is related to genetic ability to taste the bitter substance 6-n-propylthiouracil. Chem. Senses 7:265–272.Google Scholar
  49. Genuth, S. M. (1976). Effect of high fat vs high carbohydrate feeding on the development of obesity in weanling ob/ob mice. Diabetologia 12:155–159.Google Scholar
  50. Glanville, E. V., and Kaplan, A. R. (1965). Food preferences and sensitivity to taste for bitter compounds. Nature 205:851–853.Google Scholar
  51. Greene, L. S., Desor, J. A., and Maller, O. (1975). Heredity and experience: Their relative importance in the development of taste preferences in man. J. Comp. Physiol. Psychol. 89:279–284.Google Scholar
  52. Grinker, J. (1978). Obesity and sweet taste. Am. J. Clin. Nutr. 31:1078–1087.Google Scholar
  53. Hall, M. J., Bartoshuk, L. M., Cain, W. S., and Stevens, J. C. (1975). PTC taste blindness and the taste of caffeine. Nature 253:442–443.Google Scholar
  54. Heitmann, B. L., Lissner, L., Sørenson, T. I. A., and Bengtsson, C. (1995). Dietary fat intake and weight gain in women genetically predisposed for obesity. Am. J. Clin. Nutr. 61:1213–1217.Google Scholar
  55. Heller, R. F., O'Connell, D. L., Roberts, D. C. K., Allen, J. R., Knapp, J. C., Steele, P. L., and Silove, D. (1988). Lifestyle factors in monozygotic and dizygotic twins. Genet. Epidemiol. 5:311–321.Google Scholar
  56. Hill, J. O., and Prentice, A. M. (1995). Sugar and body weight regulation. Am. J. Clin. Nutr. 62:264S-274S.Google Scholar
  57. Hoshishima, K., Yokoyama, S., and Seto, K. (1962). Taste sensitivity in various strains of mice. Am. J. Physiol. 202:1200–1204.Google Scholar
  58. Inamdar, M., Vijayraghavan, K., and Rodrigues, V. (1993). The drosophila homolog of the human transcription factor TEF-1, scalloped, is essential for normal taste behavior. J. Neurogenet. 9:123–139.Google Scholar
  59. Jerzsa-Latta, M., Krondl, M., and Coleman, P. (1990). Use and perceived attributes of cruciferous vegetables in terms of genetically mediated taste sensitivity. Appetite 15:127–134.Google Scholar
  60. Kanarek, R. B., Aprille, J. R., Hirsch, E., Gualtiere, L., and Brown, C. A. (1987). Sucrose-induced obesity: Effect of diet on obesity and brown adipose tissue. Am. J. Physiol. 253:R158-R166.Google Scholar
  61. Kang, Y. S., Cho, W. K., and Yurn, K. S. (1967). Taste sensitivity to phenylthiocarbamide of Korean population. Eugen. Q. 14:1–6.Google Scholar
  62. Kleyn, P. W., Fan, W., Kovats, S. G., Lee, J. J., Pulido, J. C., Wu, Y., Berkemeier, L. R., Misumi, D. J., Holmgren, L., Charlat, O., Woolf, E. A., Tayber, O., Brody, T., Shu, P., Hawkins, F., Kennedy, B., Baldini, L., Ebeling, C., Alperin, G. D., Deeds, J., Lakey, N. D., Culpepper, J., Chen, H., Glucksmann-Kuis, M. A., and Moore, K. J. (1996). Identification and characterization of the mouse obesity gene tubby. A member of a novel gene family. Cell 85:281–290.Google Scholar
  63. Krondl, M., Coleman, P., Wade, J., and Milner, J. (1983). A twin study examining the genetic influence on food selection. Hum. Nutr. Appl. Nutr. 37A:189–198.Google Scholar
  64. Larue-Achagiotis, C., Goubern, M., Laury, M. C., and Louis-Sylvestre, J. (1994). Energy balance in an inbred strain of rats: Comparison with the Wistar strain. Physiol. Behav. 55:483–487.Google Scholar
  65. Lee, G.-H., Proenca, R., Montez, J. M., Carroll, K. M., Darvishzadeh, J. G., Lee, J. I., and Friedman, J. M. (1996). Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635.Google Scholar
  66. Lemmonnier, D., Aubert, R., Suqet, J.-P., and Rosselin, G. (1974). Metabolism of genetically obese rats on normal or high-fat diet. Diabetologia 10:697–701.Google Scholar
  67. Lieblich, I., Cohen, E., Ganchrow, J. R., Blass, E. M., and Bergmann, F. (1983). Morphine tolerance in genetically selected rats induced by chronically elevated saccharine intake. Science 221:871–873.Google Scholar
  68. Looy, H., and Weingarten, H. P. (1992). Facial expressions and genetic sensitivity to 6-n-propylthiouracil predict hedonic response to sweet. Physiol. Behav. 52:75–82.Google Scholar
  69. Lucchina, L. A., Bartoshuk, L. M., Duffy, V. B., Marks, L. M., Rappaport, R. L., and Ferris, A. M. (1995). 6-N-Propylthiouracil perception affects nutritional status of independent-living older females. Chem. Senses 20(6):735 (abstract).Google Scholar
  70. Lush, I. E. (1989). The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet. Res. Cambr. 53:95–99.Google Scholar
  71. Lush, I. E., Homigold, N., King, P., and Stoye, J. P. (1995). The genetics of tasting in mice. VII. Glycine revisited, and the chromosomal location of Sac and Soa. Genet. Res. 66:167–174.Google Scholar
  72. Maggio, C. A., Yang, M.-U., and Vasselli, J. R. (1984). Developmental aspects of macronutrient selection in genetically obese and lean rats. Nutr. Behav. 2:95–110.Google Scholar
  73. Malcolm, R., O'Neil, P. M., Hirsch, A. A., Currey, H. S., and Moskowitz, G. (1980). Taste hedonics and thresholds in obesity. Int. J. Obes. 4:203–212.Google Scholar
  74. Mattes, R., and Labov, J. (1989). Bitter taste responses to phenylcarbamide are not related to dietary goitrogen intake in human beings. J. Am. Diet. Assoc. 89:692–694.Google Scholar
  75. Mayer, J., Dickie, M. M., Bates, M., and Vitale, J. J. (1951). Free selection of nutrients by hereditarily obese mice. Science 113:745–746.Google Scholar
  76. Meiselman, H. L. (1987). Sweetness in food service systems. In Dobbing, J. (ed.), Sweetness, Springer-Verlag, London, pp. 261–276.Google Scholar
  77. Merton, B. B. (1958). Taste sensitivity to PTC in 60 Norwegian families with 176 children. Confirmation of the hypothesis of single gene inheritance. Acta Genet. 8:114–128.Google Scholar
  78. Nachman, M. (1959). The inheritance of saccharin preference. J. Comp. Physiol. Psychol. 52:451–457.Google Scholar
  79. Mela, D. J., and Sacchetti, D. S. (1991). Sensory preferences for fats in foods: Relationships to diet and body composition. Am. J. Clin. Nutr. 53:908–915.Google Scholar
  80. Naggert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., Carroll, R. J., Apigen, B. J., and Leiter, E. H. (1995). Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypiptidase E mutation which reduces enzyme activity. Nature Genet. 10:135–141.Google Scholar
  81. Niewind, A., Krondl, M., and Shrott, M. (1988). Genetic influences on the selection of brassica vegetables by elderly individuals. Nutr. Res. 8:13–20.Google Scholar
  82. Ninomiya, Y., and Funakoski, M. (1993). Genetic and neurobehavioral approaches to the taste receptor mechanism in mammals. In Simon, S. A., and Roper, S. D. (eds.), Mechanisms of Taste Transduction, CRC Press, Boca Raton, FL.Google Scholar
  83. Ninomiya, Y., Sako, N., and Imai, Y. (1995). Enhanced gustatory neural responses to sugars in the diabetic db/db mouse. Am. J. Physiol. 269:R930-R937.Google Scholar
  84. Noben-Trauth, K., Naggert, J. K., North, M. A., and Nishina, P. M. (1996). A candidate gene for the mouse mutation tubby. Nature 380:534–538.Google Scholar
  85. Okada, S., York, D. A., Bray, G. A., Mei, J., and Erlanson-Albertsson, C. (1992). Differential inhibition of fat intake in two strains of rat by the peptide enterostatin. Am. J. Phyiol. 262:R1111-R1116.Google Scholar
  86. Oliveria, S. A., Ellison, R. C., Moore, L. L., Gillman, M. W., Garrahie, E. J., and Singer, M. R. (1992). Parent-child relationships in nutrient intake: The Framingham Children's Study. Am. J. Clin. Nutr. 56:593–598.Google Scholar
  87. Overstreet, D. H., Kampov-Polevoy, A. B., Rezvani, A. H., Murrelle, L., Halikas, J. A., and Janowsky, D. S. (1993). Saccharin intake predicts ethanol intake in genetically heterogeneous rats as well as different rat strains. Alcohol. Clin. Exp. Res. 17:366–369.Google Scholar
  88. Pangborn, R. M. (1980). A critical analysis of sensory responses to sweetness. In Koivistoinen P., and L. Hyvönen (eds.), Carbohydrate Sweeteners in Foods and Nutrition, Academic Press, London, pp. 87–110.Google Scholar
  89. Pangborn, R. M., Box, K. E. O., and Stern, J. (1985). Dietary fat intake and taste responsiveness to fat in milk by under-, normal, and overweight women. Appetite 6:25–40.Google Scholar
  90. Pelz, W. E., Whitney, G., and Smith, J. C. (1973). Genetic influences on saccharin preference of mice. Physiol. Behav. 10:263–265.Google Scholar
  91. Pérusse, L., and Bouchard, C. (1994). Genetics of energy intake and food preferences. In Bouchard, C. (ed.), The Genetics of Obesity, CRC Press, Boca Raton, FL, pp. 125–134.Google Scholar
  92. Pérusse, L., Tremblay, A., Leblanc, C., Cloninger, C. R., Reich, T., Rice, J., and Bouchard, C. (1988). Familial resemblance in energy intake: Contribution of genetic and environmental factors. Am. J. Clin. Nutr. 47:629–635.Google Scholar
  93. Phillips, T. J., Crabbe, J. C., Metten, P., and Belknap, J. K. (1994). Localization of genes affecting alcohol drinking in mice. Alcohol. Clin. Exp. Res. 18:931–941.Google Scholar
  94. Pliner, P. (1983). Family resemblance in food preferences. J. Nutr. Educ. 15:137–140.Google Scholar
  95. Pliner, P., and Pelchat, M. L. (1986). Similarities in food preferences between children and their siblings and parents. Appetite 7:333–342.Google Scholar
  96. Price, R. A., Stunkard, A. J., Ness, R., Wadden, T., Heshka, S., Kanders, B., and Cormillo, A. (1990). Childhood onset (age < 10) obesity has high familial risk. Int. J. Obes. 14:185–195.Google Scholar
  97. Ramirez, I. (1977). A factor analytic-genetic approach to the relation between obesity and behavior in mice. J. Comp. Physiol. Psychol. 91:174–181.Google Scholar
  98. Ramirez, I., and Fuller, J. L. (1975). Genetic influence on water and sweetened water consumption in mice. Physiol. Behav. 16:163–168.Google Scholar
  99. Ramirez, I., and Sprott, R. L. (1979a). Diet/taste and feeding behavior of genetically obese mice (C57BL/6J-ob/ob). Behav. Neural Biol. 25:449–472.Google Scholar
  100. Ramirez, I., and Sprott, R. L. (1979b). Regulation of caloric intake in yellow mice (C57BL/6J-Ay/a). Physiol. Behav. 22:507–511.Google Scholar
  101. Rankin, K. M., and Mattes, R. D. (1996). Role of food familiarity and taste quality in food preferences of individuals with Prader-Willi syndrome. Int. J. Obes. 20:759–762.Google Scholar
  102. Reed, D. R., Mela, D. J., and Friedman, M. I. (1992). Sensory and metabolic influences on fat intake. In Mela, D. (ed.), Dietary Fats: Determinants of Preference, Selection and Consumption, Elsevier Science, Essex, England, pp. 117–137.Google Scholar
  103. Reed, D. R., Bartoskuk, L. M., Duffy, V., Marino, S., and Price, R. A. (1995a). PROP tasting: Determination of underlying thresholds distributions using maximum likelihood. Chem. Senses 20:529–533.Google Scholar
  104. Reed, D. R., Ding, Y., Xu, W., Cather, C., and Price, R. A. (1995b). Human obesity does not segregate with the chromosomal regions of Prader-Willi, Bardet-Biedl, Cohen, Borjeson or Wilson-Turner syndromes. Int. J. Obes. 19:599–603.Google Scholar
  105. Ritchey, N., and Olson, C. (1983). Relationships between family variables and children's preference for and consumption of sweet foods. Ecol. Food Nutr. 13:257–266.Google Scholar
  106. Rodin, J., Moskowitz, H. R., and Bray, G. A. (1976). Relationship between obesity, weight loss, and taste responsiveness. Physiol. Behav. 17:591–597.Google Scholar
  107. Rodrigues, V., Cheah, P. Y., Ray, K., and Chia, W. (1995). malvolio, the Drosophila homologue of mouse NRAMP-I (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour. EMBO J. 14:3007–3020.Google Scholar
  108. Romsos, D. R., and Ferguson, D. (1982). Self-selected intake of carbohydrate, fat and protein by obese (ob/ob) and lean mice. Physiol. Behav. 28:301–305.Google Scholar
  109. Rothwell, N. J., Saville, M. E., and Stock, M. J. (1982). Effects of feeding a “cafeteria” diet on energy balance and diet-induced thermogenesis in four strains of rat. J. Nutr. 112:1515–1524.Google Scholar
  110. Rozin, P. (1991). Family resemblance in food and other domains: The family paradox and the role of parental congruence. Appetite 16:93–102.Google Scholar
  111. Rozin, P., and Millman, L. (1987). Family environment, not heredity, accounts for family resemblance in food preferences and attitudes: A twin study. Appetite 8:125–134.Google Scholar
  112. Runyan, T. J., and Koschorreck, R. (1990). Evidence for genetic determination of specific food choices of rats. J. Am. Coll. Nutr. 9:623–629.Google Scholar
  113. Rytand, D. A. (1943). Hereditary obesity of yellow mice: A method for the study of obesity. Proc. Soc. Exp. Biol. Med. 54:340–341.Google Scholar
  114. Schemmel, R., Mickelsen, O., and Gill, J. L. (1970). Dietary obesity in rats: Body weight and body fat accretion in seven strains of rats. Nutrition 100:1041–1048.Google Scholar
  115. Sclafani, A., and Assimon, S. A. (1985). Influence of diet type and maternal background on dietary-obesity in the rat: A preliminary study. Nutr. Behav. 2:139–147.Google Scholar
  116. Smith, B. K., West, D. B., and York, D. A. (1997). Carbohydrate vs fat intake: Differing patterns of macronutrient selection in two inbred mouse strains. Am. J. Physiol. 272:R357-R362.Google Scholar
  117. Stockton, M. D., and Whitney, G. (1974). Effects of genotype, sugar, and concentration on sugar preference of laboratory mice (Mus musculus). J. Comp. Physiol. Psychol. 86:62–68.Google Scholar
  118. Tartaglia, L. A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G. J., Campfield, A., Clark, F. T., Deeds, J., Muir, C., Sander, S., Moriarty, A., Moore, K. J., Smutko, J. S., Mays, G. G., Woolf, E. A., Monroe, C. A., and Tepper, R. L. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell 38:1–20.Google Scholar
  119. Thompson, D. A., Moskowitz, H. R., and Campbell, R. G. (1977). Taste and olfaction in human obesity. Physiol. Behav. 19:335–337.Google Scholar
  120. Vartiainen, I. (1967). The inheritance of craving for sugar in rats. Ann. Med. Int. Fenn. 56:155–171.Google Scholar
  121. Wade, J., Milner, J., and Krondl, M. (1981). Evidence for a physiological regulation of food selection and nutrient intake in twins. Am. J. Clin. Nutr. 34:143–147.Google Scholar
  122. Warwick, Z. S., and Schiffman, S. S. (1990). Sensory evaluations of fat-sucrose and fat-salt mixtures: Relationship to age and weight status. Physiol. Behav. 48:633–636.Google Scholar
  123. West, D. B., Boozer, C. N., Moody, D. L., and Atkinson, R. L. (1992). Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 262:R1025-R1031.Google Scholar
  124. West, D. B., Waguespack, J., and McCollister, S. (1995). Dietary obesity in the mouse: Interaction of strain with diet composition. Am. J. Physiol. 268:R658-R665.Google Scholar
  125. Witherly, S. A., Pangborn, R. M., and Stern, J. S. (1980). Gustatory responses and eating duration of obese and lean adults. Appetite 1:53–63.Google Scholar
  126. Xiao, J.-H., Davidson, I., Matthes, H., Garnier, J.-M., and Chambon, P. (1991). Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65:551–568.Google Scholar
  127. Yokomukai, Y., Cowart, B. J., and Beauchamp, G. K. (1993). Individual differences in sensitivity to bitter-tasting substances. Chem. Senses 18:669–681.Google Scholar
  128. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432.Google Scholar
  129. Zucker, T. F., and Zucker, L. M. (1962). Hereditary obesity in the rat associated with high serum fat and cholesterol. Proc. Soc. Exp. Biol. Med. 110:165–171.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Danielle R. Reed
    • 1
  • Alexander A. Bachmanov
    • 2
  • Gary K. Beauchamp
    • 2
  • Michael G. Tordoff
    • 2
  • R. Arlen Price
    • 1
  1. 1.Center for Neurobiology and Behavior, Department of PsychiatryUniversity of PennsylvaniaPhiladelphia
  2. 2.Monell Chemical Senses CenterPhiladelphia

Personalised recommendations