Neurochemical Research

, Volume 28, Issue 10, pp 1563–1574 | Cite as

Mitochondrial Dysfunction and Reactive Oxygen Species in Excitotoxicity and Apoptosis: Implications for the Pathogenesis of Neurodegenerative Diseases



In recent years we have witnessed a major interest in the study of the role of mitochondria, not only as ATP producers through oxidative phosphorylation but also as regulators of intracellular Ca2+ homeostasis and endogenous producers of reactive oxygen species (ROS). Interestingly, the mitochondria have been also implicated as central executioners of cell death. Increased mitochondrial Ca2+ overload as a result of excitotoxicity has been associated with the generation of superoxide and may induce the release of proapoptotic mitochondrial proteins, proceeding through DNA fragmentation/condensation and culminating in cell demise by apoptosis and/or necrosis. In addition, these processes have been implicated in the pathogenesis of many neurodegenerative diseases, which share several features of cell death: selective brain areas undergo neurodegeneration, involving mitochondrial dysfunction (mitochondrial complexes are affected), loss of intracellular Ca2+ homeostasis, excitotoxicity, and the extracellular or intracellular accumulation of insoluble protein aggregates in the brain.

Apoptosis calcium homeostasis excitotoxicity mitochondrial depolarization neurodegenerative diseases oxidative stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frandsen, A. and Schousboe, A. 1993. Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J. Neurochem. 60:1202-1211.PubMedGoogle Scholar
  2. 2.
    Tymianski, M., Charlton, M. P., Carlen, P. L., and Tator, C. H. 1993. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13:2085-2104.PubMedGoogle Scholar
  3. 3.
    Cebers, G., Zhivotovsky, B., Ankarcrona, M., and Liljequist, S. 1997. AMPA neurotoxicity in cultured cerebellar granule neurons: Mode of cell death. Brain Res. Bull. 43:393-403.PubMedGoogle Scholar
  4. 4.
    Carriedo, S. G., Sensi, S. L., Yin, H. Z., & Weiss, J. H. 2000. AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J. Neurosci. 20:240-250.PubMedGoogle Scholar
  5. 5.
    Liu, W., Liu, R., Chun, J. T., Bi, R., Hoe, W., Schreiber, S. S., and Baudry, M. 2001. Kainate excitotoxicity in organotypic hippocampal slice cultures: Evidence for multiple apoptotic pathways. Brain Res. 916:239-248.PubMedGoogle Scholar
  6. 6.
    McCormack, J. G., Halestrap, A. P., and Denton, R. M. 1990. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70:391-425.PubMedGoogle Scholar
  7. 7.
    Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. 1995. Ca2+-induced mitochondrial membrane permeabilization: Role of coenzyme Q redox state. Am. J. Physiol. 269:141-147.Google Scholar
  8. 8.
    Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609-1623.Google Scholar
  9. 9.
    Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P. 1995. Glutamate-induced neuronal death: A sucession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961-973.PubMedGoogle Scholar
  10. 10.
    Mattson, M. P. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1:120-129.PubMedGoogle Scholar
  11. 11.
    Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481-490.PubMedGoogle Scholar
  12. 12.
    Kim, T.-H., Zhao, Y., Barber, M. J., Kuharsky, D. K., and Yin, X.-M. 2000. Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem. 275:39474-39481.PubMedGoogle Scholar
  13. 13.
    Martin, A. G. and Fearnhead, H. O. 2002. Apocytochrome c blocks caspase-9 activation and Bax-induced apoptosis. J. Biol. Chem. 277:50834-50841.PubMedGoogle Scholar
  14. 14.
    Liu, X., Zou, H., Slaughter, C., and Wang, X. 1997. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175-184.PubMedGoogle Scholar
  15. 15.
    Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441-446.PubMedGoogle Scholar
  16. 16.
    Candé, C., Cecconi, F., Dessen, P., and Kroemer, G. 2002. Apoptosis-inducing factor (AIF): Key to the conserved caspase-independent pathways of cell death? J. Cell Sci. 115:4727-4734.PubMedGoogle Scholar
  17. 17.
    Li, L. Y., Luo, X., and Wang, X. 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95-99.PubMedGoogle Scholar
  18. 18.
    Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. 2000. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43-53.PubMedGoogle Scholar
  19. 19.
    Du, C., Fang, M., Li, Y., Li, L., and Wang, X. 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33-42.PubMedGoogle Scholar
  20. 20.
    MacFarlane, M., Merrison, W., Bratton, S. B., and Cohen, G. M. 2002. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitation in vitro. J. Biol. Chem. 277:36611-36616.PubMedGoogle Scholar
  21. 21.
    Springs, S. L., Diavolitsis, V. M., Goodhouse, J., and McLendon, G. L. 2002. The kinetics of translocation of Smac/Diablo from the mitochondria to the cytosol in HeLa cells. J. Biol. Chem. 277:45715-45718.PubMedGoogle Scholar
  22. 22.
    Finucane, D. M., Waterhouse, N. J., Amarante-Mendes, G. P., Cotter, T. G., and Green, D. R. 1999. Collapse of the inner mitochondrial transmembrane potential is not required for apoptosis of HL60 cells. Exp. Cell Res. 251:166-174.PubMedGoogle Scholar
  23. 23.
    Heiskanen, K. M., Bhat, M. B., Wang, H.-W., Ma, J., and Nieminen, A.-L. 1999. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274:5654-5658.PubMedGoogle Scholar
  24. 24.
    Prehn, J. H. M., Jordán, J., Ghadge, G. D., Preis, E., Galindo, M. F., Roos, R. P., Krieglstein, J., and Miller, R. J. 1997. Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis. J. Neurochem. 68:1679-1685.PubMedGoogle Scholar
  25. 25.
    Rego, A. C., Vesce, S., and Nicholls, D. G. 2001. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ. 8:995-1003.PubMedGoogle Scholar
  26. 26.
    Lassus, P., Opitz-Araya, X., and Lazebnik, Y. 2002. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352-1354.PubMedGoogle Scholar
  27. 27.
    Kumar, S. and Vaux, D. L. 2002. A Cinderella caspase takes center stage. Science 297:1290-1291.PubMedGoogle Scholar
  28. 28.
    Lemasters, J. J., Qian, T., Elmore, S. P., Trost, L. C., Nishimura, Y., Herman, B., Bradham, C. A., Brenner, D. A., Nieminen, A. L. 1998. Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofactors 8:283-285.PubMedGoogle Scholar
  29. 29.
    Uchiyama, Y. 2001. Autophagy cell death and its execution by lysosomal cathepsins. Arch. Histol. Cytol. 64:233-246.PubMedGoogle Scholar
  30. 30.
    Pastorino, J. G., Tafani, M., Rothman, R. J., Marcineviciute, A., Hoek, J. B., and Farber, J. L. 1999. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem. 274:31734-31739.PubMedGoogle Scholar
  31. 31.
    Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A., and Martinou, J.-C. 1998. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143:217-224.PubMedGoogle Scholar
  32. 32.
    Mikhailov, V., Mikhailova, M., Pulkrabek, D. J., Dong, Z., Venkatachalam, M. A., and Saikumar, P. 2001. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J. Biol. Chem. 276:18361-18374.PubMedGoogle Scholar
  33. 33.
    Henshall, D. C., Araki, T., Schindler, C. K., Lan, J.-Q., Tiekoter, K. L., Taki, W., and Simon, R. P. 2002. Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death. J. Neurosci. 22:8458-8465.PubMedGoogle Scholar
  34. 34.
    Springer, J. E., Azbill, R. D., Nottingham, S. A., and Kennedy, S. E. 2000. Calcineurin-mediated Bad dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J. Neurosci. 20:7246-7251.PubMedGoogle Scholar
  35. 35.
    Yang, J., Liu, X., Bhalla, K, Kim, C. N., Ibrado, A. M., Cai, J., Peng, T.-I., Jones, D. P., and Wang, X. 1997. Prevention of apoptosis by bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129-1132.PubMedGoogle Scholar
  36. 36.
    Wang, N. S., Unkila, M. T., Reineks, E. Z., and Distelhorst, C. W. 2001. Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J. Biol. Chem. 276:44117-44128.PubMedGoogle Scholar
  37. 37.
    Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., örd, T., and Bredesen, D. E. 1993. Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 262:1274-1277.PubMedGoogle Scholar
  38. 38.
    Ellerby, L. M., Ellerby, H. M., Park, S. M., Holleran, A. L., Murphy, A. N., Fiskum, G., Kane, D. J., Testa, M. P., Kayalar, C., and Bredesen, D. E. 1996. Shift of the cellular oxidation-reduction potential in neural cells expressing bcl-2. J. Neurochem. 67:1259-1267.PubMedGoogle Scholar
  39. 39.
    Zhu, L., Ling, S., Yu, X.-D., Venkatesh, L. K., Subramanian, T., Chinnadurai, G., and Kuo, T. H. 1999. Modulation of mitochondrial Ca2+ homeostasis by Bcl-2. J. Biol. Chem. 274:33267-33273.PubMedGoogle Scholar
  40. 40.
    Krohn, A. J., Wahlbrink, T., and Prehn, J. H. M. 1999. Mitochondrial depolarization is not required for neuronal apoptosis. J. Neurosci. 19:7394-7404.PubMedGoogle Scholar
  41. 41.
    Shimizu, S. and Tsujimoto, Y. 2000. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. USA 97:577-582.PubMedGoogle Scholar
  42. 42.
    Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. 1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744-747.PubMedGoogle Scholar
  43. 43.
    Arnaudeau, S., Kelley, W. L., Walsh, Jr. J. V., and Demaurex, N. 2001. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 276:29430-29439.PubMedGoogle Scholar
  44. 44.
    Rapizzi, E., Pinton, P., Szabadkai, G., Wieckowski, M. R., Vandecasteele, G., Baird, G., Tuft, R. A., Fogarty, K. E., and Rizzuto, R. 2002. Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 159:613-624.PubMedGoogle Scholar
  45. 45.
    Chen, L. and Gao, X. 2002. Neuronal apoptosis induced by endoplasmic reticulum stress. Neurochem. Res. 27:891-898.PubMedGoogle Scholar
  46. 46.
    Aoki, S., Su, Q., Li, H., Nishikawa, K., Ayukawa, K., Hara, Y., Namikawa, K., Kiryu-Seo, S., Kiyama, H., and Wada, K. 2002. Identification of an axotomy-induced glycosylated protein, AIGP1, possibly involved in cell death triggered by endoplasmic reticulum-golgi stress. J. Neurosci. 22:10751-10760.PubMedGoogle Scholar
  47. 47.
    Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., and Bredesen, D. E. 2001. Coupling endoplasmic reticulum stress to the cell death program. J. Biol. Chem. 276:33869-33874.PubMedGoogle Scholar
  48. 48.
    Ferri, K. F. and Kroemer, G. 2001. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3:E255-E263.PubMedGoogle Scholar
  49. 49.
    Peng, T.-I. and Greenamyre, J. T. 1998. Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol. Pharmacol. 53:974-980.PubMedGoogle Scholar
  50. 50.
    Stout, A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E., and Reynolds, I. J. 1998. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci. 1:366-373.PubMedGoogle Scholar
  51. 51.
    Ward, M. W., Rego, A. C., Frenguelli, B. G., and Nicholls, D. G. 2000. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20:7208-7219.PubMedGoogle Scholar
  52. 52.
    Rego, A. C., Santos, M. S., and Oliveira, C. R. 2000. Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinal cells. Neurochem. Int. 36:159-166.PubMedGoogle Scholar
  53. 53.
    Castilho, R. F., Hansson, O., Ward, M. W., Budd, S. L., and Nicholls, D. G. 1998. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 18:10277-10286.PubMedGoogle Scholar
  54. 54.
    Alano, C. C., Beutner, G., Dirksen, R. T., Gross, R. A., and Sheu, S. S. 2002. Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation. J. Neurochem. 80:531-538.PubMedGoogle Scholar
  55. 55.
    Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E., and Passarella, S. 2000. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem. 275:37159-37166.PubMedGoogle Scholar
  56. 56.
    Luetjens, C. M., Bui, N. T., Sengpiel, B., Münstermann, G., Poppe, M., Krohn, A. J., Bauerbach, E., Krieglstein, J., and Prehn, J. H. M. 2000. Delayed mitochondrial dysfunction in excitotoxic neuron death: Cytochrome c release and a secondary increase in superoxide production. J. Neurosci. 20:5715-5723.PubMedGoogle Scholar
  57. 57.
    Tenneti, L. and Lipton, S. A. 2000. Involvement of activated caspase-3-like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 74:134-142.PubMedGoogle Scholar
  58. 58.
    Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. 2002. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259-263.PubMedGoogle Scholar
  59. 59.
    Rego, A. C., Ward, M. W., and Nicholls, D. G. 2001. Mitochondria control AMPA/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells. J. Neurosci. 21:1893-1901.PubMedGoogle Scholar
  60. 60.
    Kiedrowski, L. 1998. The difference between mechanisms of kainate and glutamate excitotoxicity in vitro: Osmotic lesion versus mitochondrial depolarization. Restor. Neurol. Neurosci. 12:71-79.PubMedGoogle Scholar
  61. 61.
    Larm, J. A., Cheung, N. S., and Beart, P. M. 1997. Apoptosis induced via AMPA-selective glutamate receptors in cultured murine cortical neurons. J. Neurochem. 69:617-622.PubMedGoogle Scholar
  62. 62.
    Rego, A. C., Monteiro, N. M., Silva, A. P., Gil, J., Malva, J. O., and Oliveira, C. R. 2003. Mitochondrial apoptotic cell death and moderate superoxide generation upon selective activation of non-desensitizing AMPA receptors in hippocampal cultures. J. Neurochem. (in press).Google Scholar
  63. 63.
    Itoh, T., Itoh, A., Horiuchi, K., and Pleasure, D. 1998. AMPA receptor-mediated excitotoxicity in human NT2-N neurons results from loss of intracellular Ca2+ homeostasis following marked elevation of intracellular Na+. J. Neurochem. 71:112-124.PubMedGoogle Scholar
  64. 64.
    Turrens, J. F., Alexandre, A., Lehninger, A. L. 1985. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237:408-414.PubMedGoogle Scholar
  65. 65.
    Maciel, E. N., Vercesi, A. E., and Castilho, R. F. 2001. Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J. Neurochem. 79:1237-1245.PubMedGoogle Scholar
  66. 66.
    Patel, M., Day, B. J., Crapo, J. D., Fridovich, I., and McNamara, J. O. 1996. Requirement for superoxide in excitotoxic cell death. Neuron 16:345-355.PubMedGoogle Scholar
  67. 67.
    Bindokas, V. P., Jordán, J., Lee, C. C., and Miller, R. J. 1996. Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine. J. Neurosci. 16:1324-1336.PubMedGoogle Scholar
  68. 68.
    Cai, J. and Jones, D. P. 1998. Superoxide in apoptosis: Mitochondrial generation triggered by cytochrome c loss. J. Biol. Chem. 273:11401-11404.PubMedGoogle Scholar
  69. 69.
    Sugawara, T., Noshita, N., Lewén, A., Gasche, Y., Ferrand-Drake, M., Fujimura, M., Morita-Fujimura, Y., and Chan, P. H. 2002. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22:209-217.PubMedGoogle Scholar
  70. 70.
    Greenlund, L. J., Deckwerth, T. L., and Johnson, E. M., Jr. 1995. Superoxide dismutase delays neuronal apoptosis: A role for reactive oxygen species in programmed neuronal death. Neuron 14:303-315.PubMedGoogle Scholar
  71. 71.
    Takeyama, N., Miki, S., Hirakawa, A., and Tanaka, T. 2002. Role of the mitochondrial permeability transition and cytochrome c release in hydrogen peroxide-induced apoptosis. Exp. Cell Res. 274:16-24.PubMedGoogle Scholar
  72. 72.
    Kruman, I., Guo, Q., and Mattson, M. P. 1998. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J. Neurosci. Res. 51:293-308.PubMedGoogle Scholar
  73. 73.
    Forrest, V. J., Kang, Y.-H., McClain, D. E., Robinson, D. H., and Ramakrishnan, N. 1994. Oxidative stress-induced apoptosis prevented by trolox. Free Radic. Biol. Med. 16:675-684.PubMedGoogle Scholar
  74. 74.
    Krohn, A. J., Preis, E., and Prehn, J. H. M. 1998. Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector. J. Neurosci. 18:8166-8197.Google Scholar
  75. 75.
    Ahlemeyer, B. and Krieglstein, J. 2000. Inhibition of glutathione depletion by retinoic acid and tocopherol protects cultured neurons from staurosporine-induced oxidative stress and apoptosis. Neurochem. Int. 36:1-15.PubMedGoogle Scholar
  76. 76.
    Welch, W. J. and Gambetti, P. 1998. Chaperoning brain diseases. Nature 392:23-24.PubMedGoogle Scholar
  77. 77.
    Hyun, D.-H., Lee, M., Hattori, N., Kubo, S.-I., Mizuno, Y., Halliwell, B., and Jenner, P. 2002. Effect of wild-type or mutant parkin on oxidative damage, nitric oxide, antioxidant defenses and the proteasome. J. Biol. Chem. 277:28572-28577.PubMedGoogle Scholar
  78. 78.
    Lee, H. J., Shin, S. Y., Choi, C., Lee, Y. H., Lee, S. J. 2002. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277:5411-5417.PubMedGoogle Scholar
  79. 79.
    Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V., Cookson, M. R., and Greenamyre, J. T. 2002. An in vitro model of Parkinson's disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22:7006-7015.PubMedGoogle Scholar
  80. 80.
    Kitamura, Y., Inden, M., Miyamura, A., Kakimura, J., Taniguchi, T., and Shimohama, S. 2002. Possible involvement of both mitochondria-and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci. Lett. 333:25-28.PubMedGoogle Scholar
  81. 81.
    da Costa, C. A., Paitel, E., Vincent, B., and Checler, F. 2002. α-Synuclein lowers p53-dependent apoptotic response of neuronal cells: Abolishment by 6-hydroxydopamine and implication for Parkinson's disease. J. Biol. Chem. 277:50980-50984.PubMedGoogle Scholar
  82. 82.
    Lee, M., Hyun, D., Halliwell, B., and Jenner, P. 2001. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J. Neurochem. 76:998-1002.PubMedGoogle Scholar
  83. 83.
    Xu, J., Chen, S., Ku, G., Ahmed, S. H., Xu, J., Chen, H., and Hsu, C. Y. 2001. Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J. Cereb. Blood Flow Metab. 21:702-710.PubMedGoogle Scholar
  84. 84.
    Moreira, P. I., Santos, M. S., Moreno, A., Rego, A. C., and Oliveira, C. 2002. Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J. Neurosci. Res. 69:257-267.PubMedGoogle Scholar
  85. 85.
    Cardoso, S. M., Santos, S., Swerdlow, R. H., and Oliveira, C. R. 2001. Functional mitochondria are required for amyloid β-mediated neurotoxicity. FASEB J. 10.1096/fj.00-0561fje.Google Scholar
  86. 86.
    Xu, X., Shi, Y., Gao, W., Mao, G., Zhao, G., Agrawal, S., Chisolm, G. M., Sui, D., and Cui, M.-Z. 2002. The novel presenilin-1-associated protein is a proapoptotic mitochondrial protein. J. Biol. Chem. 277:48913-48922.PubMedGoogle Scholar
  87. 87.
    Miguel-Hidalgo, J. J., Alvarez, X. A., Cacabelos, R., and Quack, G. 2002. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid (1-40). Brain Res. 958:210-221.PubMedGoogle Scholar
  88. 88.
    Gasparini, L., Netzer, W. J., Greengard, P., and Xu, H. 2002. Does insulin dysfunction play a role in Alzheimer's disease? Trends Pharmacol. Sci. 23:288-293.PubMedGoogle Scholar
  89. 89.
    Bertrand, F., Desbois-Mouthon, C., Cadoret, A., Prunier, C., Robin, H., Capeau, J., Atfi, A., and Cherqui, G. 1999. Insulin antiapoptotic signaling involves insulin activation of the nuclear factor kB-dependent survival genes encoding tumor necrosis factor receptor-associated factor 2 and manganese superoxide dismutase. J. Biol. Chem. 274:30596-30602.PubMedGoogle Scholar
  90. 90.
    Barber, A. J., Nakamura, M., Wolpert, E. B., Reiter, C. E. N., Seigel, G. M., Antonetti, D. A., and Gardner, T. W. 2001. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol-3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J. Biol. Chem. 276:32814-32821.PubMedGoogle Scholar
  91. 91.
    Vis, J. C., Verbeek, M. M., de Waal, R. M., ten Donkelaar, H. J., and Kremer, B. 2001. The mitochondrial toxin 3-nitropropionic acid induces differential expression patterns of apoptosis-related markers in rat striatum. Neuropathol. Appl. Neurobiol. 27:68-76.PubMedGoogle Scholar
  92. 92.
    Garcia, M., Vanhoutte, P., Pages, C., Besson, M. J., Brouillet, E., and Caboche, J. 2002. The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a c-Jun N-terminal kinase/c-Jun module. J. Neurosci. 22:2174-2184.PubMedGoogle Scholar
  93. 93.
    Kiechle, T., Dedeoglu, A., Kubilus, J., Kowall, N. W., Beal, M. F., Friedlander, R., Hersch, S. M., and Ferrante, R. J. 2002. Cytochrome c and caspase-9 expression in Huntington's disease. Neuromol. Med. 1:183-195.Google Scholar
  94. 94.
    Gafni, J. and Ellerby, L. M. 2002. Calpain activation in Huntington's disease. J. Neurosci. 22:4842-4849.PubMedGoogle Scholar
  95. 95.
    Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G. P., and Davies, S. W. 2000. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. 97:8093-8097.PubMedGoogle Scholar
  96. 96.
    Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., Hayden, M. R., and Raymond, L. A. 2002. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33:849-860.PubMedGoogle Scholar
  97. 97.
    Panov, A. V., Gutekunst, C. A., Leavitt, B. R., Hayden, M. R., Burke, J. R., Strittmatter, W. J., and Greenamyre, J. T. 2002. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5:731-736.PubMedGoogle Scholar
  98. 98.
    Rigamonti, D., Sipione, S., Goffredo, D., Zuccato, C., Fossale, E., and Cattaneo, E. 2001. Huntingtin's neuroprotective activity occurs via inhibition of procaspase-9 processing. J. Biol. Chem. 276:14545-14548.PubMedGoogle Scholar
  99. 99.
    Goffredo, D., Rigamonti, D., Tartari, M., De Micheli, A., Verderio, C., Matteoli, M., Zuccato, C., and Cattaneo, E. 2002. Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J. Biol. Chem. 277:39594-39598.PubMedGoogle Scholar
  100. 100.
    Brunk, U. T. and Terman, A. 2002. The mitochondrial-lysosomal axis theory of aging: Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269:1996-2002.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Institute of Biochemistry, Faculty of Medicine and Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations