A Web-based Resource for Automatic Discovery in Plane Geometry

  • Francisco Botana


Plane Geometry Automatic Discovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernat, P. (1994). Calques2.Pont-à-Mousson, France: Topiques Éditions.Google Scholar
  2. Bernat, P. and Morinet-Lambert, J. (1996). A new way for visual reasoning in geometry education.In C. Frasson, G. Gauthier, A. Lesgold (Eds), Proc. Intelligent Tutoring Systems ITS'96, Lecture Notes in Computer Science, Vol. 1086 (pp. 448-456).Google Scholar
  3. Botana, F. and Valcarce, J.L. (2003). A software tool for the investigation of plane loci.Mathematics and Computers in Simulation 61(2): 141-154.Google Scholar
  4. Botana, F. and Valcarce, J.L. (2002). A dynamic-symbolic interface for geometric theorem discovery.Computers and Education 38(1-3): 21-35.Google Scholar
  5. Botana, F. and Valcarce, J.L. (2001). Cooperation between a dynamic geometry environment and a computer algebra system for geometric discovery.In V.G. Ganzha, E.W. Mayr and E.V. Vorozhtsov, (Eds), Computer Algebra in Scientific Computing CASC 2001 (pp. 63-74). Berlin: Springer.Google Scholar
  6. Buchberger, B. (1985). Groebner bases: An algorithmic method in polynomial ideal theory.In N.K. Bose (Ed.), Multidimensional Systems Theory (pp. 184-232). Dordrecht: Reidel.Google Scholar
  7. Capani, A., Niesi, G. and Robbiano, L. CoCoA, a system for doing Computations in Commutative Algebra.Available via anonymous ftp from: cocoa.dima.unige.itGoogle Scholar
  8. Gao, X.S., Zhang, J.Z. and Chou, S.C. (1998). Geometry Expert.Taiwan: Nine Chapters Publ.Google Scholar
  9. Goldenberg, E.P. and Cuoco, A. (1998). What is dynamic geometry? In R. Lehrer and D. Chazan (Eds), Designing Learning Environments for Developing Understanding of Geometry and Space (pp. 351-367). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  10. Guzmán, M. (1999). An extension of the Wallace-Simson theorem: Projecting in arbitrary directions.American Mathematical Monthly 106(6): 574-580.Google Scholar
  11. Hanna, G. (1997). The ongoing value of proof.Journal Mathematik Didaktik 18(2): 171- 185.Google Scholar
  12. Kapur, D. (1988). A refutational approach to geometry theorem proving.Artificial Intelligence 37: 61-94.Google Scholar
  13. King, J. and Schattschneider, D. (1997). Geometry Turned On.Washington: MAA.Google Scholar
  14. Laborde, J.M. and Straesser, R. (1990). Cabri Géomètre, a microworld of geometry for guided discovery learning.Zentralblatt für Didaktik der Mathematik 22(5): 171-177.Google Scholar
  15. NCTM (2000). Principles and Standards for School Mathematics.Reston, VA: NCTM.Google Scholar
  16. Nevins, A.J. (1975). Plane geometry theorem proving using forward chaining.Artificial Intelligence 6: 1-23.Google Scholar
  17. Recio, T. and Vélez, M.P. (1999). Automatic discovery of theorems in elementary geometry.Journal of Automated Reasoning 23: 63-82.Google Scholar
  18. Richter-Gebert, J. and Kortenkamp, U. (1999). The Interactive Geometry Software Cinderella.Berlin: Springer.Google Scholar
  19. Roanes, E. (2002). Boosting the geometrical possibilities of dynamic geometry systems and computer algebra systems through cooperation.In M. Borovcnik and H. Kautschitsch (Eds), Technology in Mathematics Teaching (pp. 335-348). Vienna: öbv & hpt.Google Scholar
  20. Tall, D. (1997). Cognitive development, representations and proof.In Proc. Justifying and Proving in School Mathematics (pp. 27-38). London: Institute of Education.Google Scholar
  21. de Villiers, M. (1997). The role of proof in investigative, computer-based geometry: some personal reflections.In J. King and D. Schattschneider (Eds), Geometry Turned On (pp. 15-24). Washington: MAA.Google Scholar
  22. Wu, W.T. (1994). Mechanical Theorem Proving in Geometries.Vienna: Springer.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Francisco Botana
    • 1
  1. 1.Department of Applied Mathematics IUniversity of Vigo, Campus A XunqueiraPontevedraSpain

Personalised recommendations