Advertisement

Numerical Algorithms

, Volume 33, Issue 1–4, pp 381–398

# An Improved Implementation of An Iterative Method in Boundary Identification Problems

• Abdeljalil Nachaoui
Article

## Abstract

In this paper, an inverse problem of determining geometric shape of a part of the boundary of a bounded domain is considered. Based on a conjugate gradient method, employing the adjoint equation to obtain the descent direction, an identification scheme is developed. The implementation of the method based on the boundary element method (BEM) is also discussed. This method solves the inverse boundary problem accurately without a priori information about the unknown shape to be estimated.

identification problem Laplace's equation conjugate gradient-type method boundary element LU decomposition Bi-CGSTAB iterative solver

## Preview

Unable to display preview. Download preview PDF.

## References

1. [1]
N.D. Aparicio and M.K Pidcock, The boundary inverse problem for the Laplace equation in two dimensions, Inverse Problems 12(5) (1996) 565–577.Google Scholar
2. [2]
K. Baba and M. Ochi, Monitoring of transient temperature distribution in piping, Consortium Math. Ind. 10 (1994) 169–186.Google Scholar
3. [3]
E. Beretta and S. Vessella, Stable determination of boundaries from Cauchy data, SIAM J. Math. Anal. 30(1) (1998) 220–232.Google Scholar
4. [4]
A. Chakib, T. Ghemires and A. Nachaoui, An optimal shape design formulation for inhomogeneous dam problems, Math. Methods Appl. Sci. 25(6) (2002) 473–489.Google Scholar
5. [5]
J.-H. Chou and J. Ghaboussi, Genetic algorithm in structural damage detection, Comput. Struct. 79(14) (2001) 1335–1353.Google Scholar
6. [6]
L. Desbat and D. Girard, The “minimum reconstruction error” choice of regularization parameters: Some more efficient methods and their application to deconvolution problems, SIAM J. Sci. Comput. 16(6) (1995) 1387–1403.Google Scholar
7. [7]
A. Ellabib and A. Nachaoui, On the numerical solution of a free boundary identification problem, Inverse Problems Engrg. 9(3) (2001) 235–260.Google Scholar
8. [8]
H.W. Engl and W. Grever, Using the L-curve for determining optimal regularization parameters, Numer. Math. 69(1) (1994) 25–31.Google Scholar
9. [9]
H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, The Netherlands 1996).Google Scholar
10. [10]
H.W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Problems 16(6) (2000) 1907–1923.Google Scholar
11. [11]
M. Essaouini, A. Nachaoui and S. El Hajji, Numerical method for solving a classe of nonlinear elliptic inverse problems, J. Comput. Appl. Math., to appear.Google Scholar
12. [12]
R. Fletcher and R.M. Reeves, Function minimization by conjugate gradient, Computer J. 7 (1964) 149–154.Google Scholar
13. [13]
A. Golan and V. Dose, A generalized information theoretical approach to tomographic reconstruction, J. Phys. A Math. Gen. 34(7) (2001) 1271–1283.Google Scholar
14. [14]
M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Pitman Research Notes in Mathematics Series, Vol. 327 (Longman Scientific & Technical, Harlow, 1995).Google Scholar
15. [15]
M. Hanke, A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems 13(1) (1997) 79–95.Google Scholar
16. [16]
P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev. 34(4) (1992) 561–580.Google Scholar
17. [17]
P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM Monographs on Mathematical Modeling and Computation (SIAM, Philadelphia, PA, 1998).Google Scholar
18. [18]
W.M. Hasan, A. Piva and E. Viola, Parameter estimation from measured displacements of crack edges in an isotropic material, Engrg. Fracture Mech. 59(5) (1998) 697–712.Google Scholar
19. [19]
D. Hinestroza, Identification of transmissivity coefficients by mollification techniques. II. n-dimensional elliptic problems, Comput. Math. Appl. 30(1) (1995) 11–30.Google Scholar
20. [20]
Y.C. Hon and Z. Wu, A numerical computation for inverse boundary determination problem, Engrg. Anal. Bound. Elem. 24 (2000) 599–606.Google Scholar
21. [21]
M. Jourhmane and A. Nachaoui, An alternating method for an inverse Cauchy problem, Numer. Algorithms 21 (1999) 247–260.Google Scholar
22. [22]
A.J. Kassab, C.K. Hsieh and J. Pollard, Solution of the inverse geometric problem for the detection of subsurface cavities by the IR-CAT method, in: Boundary Integral Formulations for Inverse Analysis, Advances in Bound. Elem. Ser. (CMP, Southampton, 1997) pp. 33–65.Google Scholar
23. [23]
M. Kilmer and D.P. O'Leary, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl. 22(4) (2001) 1204–1221.Google Scholar
24. [24]
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Applied Mathematical Sciences, Vol. 120 (Springer, New York, 1996).Google Scholar
25. [25]
M.V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace's equation, SIAM J. Appl. Math. 51(6) (1991) 1653–1675.Google Scholar
26. [26]
K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, International Series on Comput. Engrg. (CMP, Southampton, 1995).Google Scholar
27. [27]
H.S. Lee, C.J. Park and H.W. Park, Identification of geometric shapes and material properties of inclusions in two-dimensional finite bodies by boundary parametrization, Comput. Methods Appl. Mech. Engrg. 181(1–3) (2000) 1–20.Google Scholar
28. [28]
A. Lenzen and H. Waller, Damage detection by system identification, An application of the generalized singular value decomposition, Arch. Appl. Mech. 66(8) (1996) 555–568.Google Scholar
29. [29]
M. Maalej, A. Karasaridis, D. Hatzinakos and S.J. Pantazopoulou, Spectral analysis of sensor data in civil engineering structures, Comput. Struct. 70(6) (1999) 675–689.Google Scholar
30. [30]
V.A. Morozov, Methods for Solving Incorrectly Posed Problems (Springer, New York, 1984).Google Scholar
31. [31]
A. Nachaoui, Numerical linear algebra for reconstruction inverse problems, J. Comput. Appl. Math., to appear.Google Scholar
32. [32]
H.G. Natke, N. Cottin and U. Prells, Applications of system identification and the role of regularization, Bull. Pol. Acad. Sci. Tech. Sci. 44(3) (1996) 219–242.Google Scholar
33. [33]
Y. Ohura, K. Kobayashi and K. Onishi, Identification of boundary displacements in plane elasticity by BEM, Engrg. Anal. Bound. Elem. 20(4) (1997) 327–335.Google Scholar
34. [34]
S. Peneau, Y. Jarny and A. Sardra, Isotherm shape identification for a two dimensional heat conduction problem, in: Inverse Problems in Engineering Mechanics, eds. H.D. Bui, M. Tanaka, M. Bonnet, H. Maigre, E. Luzzato and M. Reynier (Balkema, Rotterdam, 1994) pp. 47–53.Google Scholar
35. [35]
E.L. Piccolomini and F. Zama, The conjugate gradient regularization method in computed tomography problems, Appl. Math. Comput. 102(1) (1999) 87–99.Google Scholar
36. [36]
W. Ring, A first-order sequential predictor-corrector regularization method for ill-posed Volterra equations, SIAM J. Numer. Anal. 38(6) (2001) 2079–2102.Google Scholar
37. [37]
L. Rondi, Optimal stability estimates for determination of defects by electrostatic measurements, Inverse Problems 15(5) (1999) 1193–1212.Google Scholar
38. [38]
O. Scherzer, The use of Tikhonov regularization in the identification of electrical conductivities from overdetermined boundary data, Result. Math. 22(1/2) (1992) 598–618.Google Scholar
39. [39]
A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977).Google Scholar
40. [40]
H.A Van der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13(2) (1992) 631–644.Google Scholar
41. [41]
C.R. Vogel, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems 12(4) (1996) 535–547.Google Scholar
42. [42]
W. Yeih, T. Koya and T. Mura, An inverse problem in elasticity with partially overprescribed boundary conditions, J. Appl. Mech. 60(3) (1993) 595–606.Google Scholar
43. [43]
F. Zhang, A.J. Kassab and D.W. Nicholson, A boundary element solution of an inverse elasticity problem and applications to determining residual stress and contact stress, Internat. J. Solids Struct. 34(16) (1997) 2073–2086.Google Scholar

## Copyright information

© Kluwer Academic Publishers 2003

## Authors and Affiliations

• Abdeljalil Nachaoui
• 1
1. 1.Département de MathématiquesUniversité de Nantes/CNRS UMR 6629, dNantesFrance