Space Science Reviews

, Volume 107, Issue 1–2, pp 317–325 | Cite as

Solar Influence on Earth's Climate

  • Nigel Marsh
  • Henrik Svensmark
Article

Abstract

An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (<3.2 km). GCR are responsible for nearly all ionisation in the atmosphere below 35 km. One mechanism could involve ion-induced formation of aerosol particles (diameter range, 0.001–1.0 μm) that can act as cloud condensation nuclei (CCN). A systematic variation in the properties of CCN will affect the cloud droplet distribution and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget.

climate GCR sun 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bond, G. et al.: 2001, ‘Persistent Solar Influence on North Atlantic Climate during the Holocene’. Science 294, 2130.CrossRefADSGoogle Scholar
  2. Clarke, A. D. et al.: 1998, ‘Particle Nucleation in the Tropical Boundary Layer and its Coupling to Marine Sulfur Sources.’, Science 282, 89-92.CrossRefADSGoogle Scholar
  3. Dickinson, R.: 1975, ‘Solar Variability and the Lower Atmosphere’, Bull.Am.Met.Soc. 56, 1240.CrossRefADSGoogle Scholar
  4. Ferraro, R., Weng, F., Grody, N. and Basist, A.: 1996, ‘An Eight-year (1987-1994) Time Series of Rainfall, Snow Cover, and Sea Ice derived from SSM/I Measurements’, BAMS 77, 891.CrossRefADSGoogle Scholar
  5. Haigh, J. D.: 1996, ‘The Impact of Solar Variability on Climate’, Science 272, 981.ADSGoogle Scholar
  6. Han, Q., Rossow, W., Zeng, J. and Welch, R.: 2002, ‘Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol-cloud Interactions’, J.Atmos.Sci. 59, 726.CrossRefADSGoogle Scholar
  7. ISCCP homepage: 2002, ‘ISCCP Calibration Coefficients’, http://isccp.giss.nasa.gov/docs/calib.html.Google Scholar
  8. King, M., Radke, L. and Hobbs, P.: 1993, ‘Optical Properties of Marine Stratocumulus Clouds Modified by Ships’, J.Geophys.Res. 98, 2729.ADSCrossRefGoogle Scholar
  9. Lean, J., Beer, J. and Bradley, R.: 1992, ‘Reconstruction of Solar Irradiance Since 1610: Implications for Climate Change’, Geophys.Res.Lett. 22, 3195.CrossRefADSGoogle Scholar
  10. Lockwood, G. W. and Thompson, D. T.: 1991, ‘Solar Cycle Relationship Clouded by Neptune's Sustained Brightness Maximum’, Nature 349, 593.CrossRefADSGoogle Scholar
  11. Lockwood, M. R., Stamper, R. and Wild, M. N: 1999, ‘A doubling of the Sun's Coronal Magnetic Field during the Past 100 years’, Nature 399, 437.CrossRefADSGoogle Scholar
  12. Marsh, N. D. and Svensmark, H.: 2000a, ‘Cosmic Rays, Clouds and Climate’, Space Sci.Rev. 94, 215.CrossRefADSGoogle Scholar
  13. Marsh, N. D. and Svensmark, H.: 2000b, ‘Low Cloud Properties Influenced by Cosmic Rays’, Phys.Rev.Lett. 85(23), 5004.CrossRefADSGoogle Scholar
  14. Marsh, N. D. and Svensmark, H.: 2003, ‘GCR and ENSO Trends in ISCCP-D2 Low Cloud Properties’, J.Geophys.Res. 108(D6), 4195 DOI 10.1029/2001JD001264.CrossRefGoogle Scholar
  15. Moses, J. I., Allen, M. and Yung, Y. L.: 1989, ‘Neptune's Visual Albedo Variations over a Solar Cycle: A Pre-voyager Look at Ion-induced Nucleation and Cloud Formation in Neptune's Troposphere.’, Geophys.Res.Lett. 16, 1489.ADSGoogle Scholar
  16. Neff, U., Burns, S. J. Mangini, A., Mudelsee, M., Fleitmann, D. and Matter, A.: 2001, ‘Strong Coherence between Solar Variability and the Monsoon in Oman between 9 and 6 kyr Ago’, Nature 411, 290.CrossRefADSGoogle Scholar
  17. Ney, E. R.: 1959, ‘Cosmic Radiation and the Weather’, Nature 183, 451.CrossRefADSGoogle Scholar
  18. Parker, D., Gordon, M., Cullum, D., Sexton, D., Folland, C. and Rayner, N.: 1997, ‘A New Gridded Radiosonde Temperature Data Base and Recent Temperature Trends’, Geophys.Res.Lett. 24, 1499-1502.CrossRefADSGoogle Scholar
  19. Shindell, D., Rind, D., Balabhandran, N., Lean, J. and Lonergan, P.: 1999, ‘Solar Cycle Variability, Ozone, and Climate’, Science 284, 305.CrossRefADSGoogle Scholar
  20. Svensmark, H.: 1998, ‘Influence of Cosmic Rays on Climate’, Phys.Rev.Lett. 81, 5027.CrossRefADSGoogle Scholar
  21. Svensmark, H., Marsh, N. D. and Sjölander, B.: 2003, ‘Solar Influence on Tropospheric Temperatures’ (in preparation); also http://www.dsri.dk/∼hsv.Google Scholar
  22. Svensmark, H. and Friis-Christensen, E.: 1997, ‘Variation of Cosmic Ray Flux and Global Cloud Coverage-A Missing Link in Solar-Climate Relationships’, J.Atm.Sol.Terr.Phys. 59, 1225.CrossRefADSGoogle Scholar
  23. Yu, F.: 2002, ‘Altitude Variations of Cosmic Ray Induced Production of Aerosols: Implications for Global Cloudiness and Climate’, J.Geophys.Res. (in press).Google Scholar
  24. Yu, F. and Turco, R. P.: 2000, ‘Ultrafine Aerosol Formation via Ion-mediated Nucleation’, Geophys.Res.Lett. 27(6), 883.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Nigel Marsh
    • 1
  • Henrik Svensmark
    • 1
  1. 1.Danish Space Research InstituteCopenhagen ØDenmark

Personalised recommendations