Evolutionary Ecology

, Volume 17, Issue 3, pp 213–231

Bottlenecks in large populations: the effect of immigration on population viability

  • Alexandre Robert
  • Denis Couvet
  • François Sarrazin
Article

Abstract

We model a large population that is subject to successive short bottlenecks, in order to investigate the impact of different extents of immigration on the change in genetic load and on viability. A first simple genetic model uncovers the opposite effects of immigration on fitness according to the type of deleterious mutations considered: immigration increases fitness if the genetic load is comprised of mildly deleterious mutations, whereas it decreases fitness if it is comprised of lethals. When considering both types of mutations and adding explicit stochastic demographic considerations, in which bottlenecks are engendered by random catastrophes, the global impact of immigration on viability is dependent upon a balance between its opposite effects on the two components of the genetic load and on demographic stochasticity. In this context, immigration tends to increase the probability of extinction if occurring preferentially when population density is high, while it decreases extinction if occurring preferentially towards low-density populations.

environmental perturbation genetic load inbreeding depression population viability analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyce, M.S. (1992) Population viability analysis. Ann.Rev.Ecol.Syst. 23, 481-506.Google Scholar
  2. Brown, J.H. and Kodrik-Brown, A. (1977) Turnover rates in insular biogeography:effect of immigration on extinction. Ecology 58,445-449.Google Scholar
  3. Bryant, E.H., Meffert, L.M. and McCommas, S. A. (1990) Fitness rebound in serially bottlenecked populations of the house fly. Am. Nat. 136, 542-549.Google Scholar
  4. Charlesworth, B. and Charlesworth, D. (1999) The genetic basis of inbreeding depression. Genet. Res. 74, 329-340.Google Scholar
  5. Charlesworth, D., Morgan, T.M. and Charlesworth, B. (1993) Mutation accumulation in finite populations. J. hered. 84, 321-325.Google Scholar
  6. Crow, J.F. (1993) Mutation, mean fitness, and genetic load. Oxford Surv. Evol. Biol. 9, 3-42.Google Scholar
  7. Ebert, D., Haag, C., Kirkpatrick, M., Riek, M., Hottinger, J.W. and Pajunen, V.I. (2002) A selective advantage to immigrant genes in a Daphnia metapopulation. Science 295, 485-488.Google Scholar
  8. Falconer, D.S. (1989) Introduction to Quantitative Genetics. 3rd ed. Longman, London.Google Scholar
  9. Ferriè re, R., Sarrazin, F., Legendre, S. and Baron, J.P. (1996) Matrix population models applied to viability analysis and conservation: theory and practice using ULM software. Acta Oecol. 6, 629-656.Google Scholar
  10. Gabriel, W. and Bürger, R. (1992) Survival of small populations under demographic stochasticity. Theor. Popul. Biol. 41, 44-71.Google Scholar
  11. Gilpin, M.E. and Soulé, M.E. (1986) Minimum viable populations:processes of species extinction. In M.E. Soulé (ed.) Conservation Biology The Science of Scarcity and Diversity. Sinauer, Sunderland, MA.Google Scholar
  12. Gomulkiewicz, R. and Holt, R.D. (1999) The effect of density dependence and immigration on local adaptation and niche evolution in a black-hole sink environment.Theor. Popul. Biol. 55, 283-296.Google Scholar
  13. Halley, J.M. and Manasse, R.S. (1993) A population dynamics model subject to inbreeding depression. Evol. Ecol. 7, 15-24.Google Scholar
  14. Hedrick, P.W. (1994) Purging inbreeding depression and the probability of extinction: full-sibmating. Heredity 73, 363-372.Google Scholar
  15. Hedrick, P.W. (1995) Gene flow and genetic restoration: the Florida Panther as a case study. Conserv. Biol. 9, 996-1007.Google Scholar
  16. Hill, W.G. and Robertson, A. (1966) The effect on linkage on limits to artificial selection. Genet. Res. 8, 269-294.Google Scholar
  17. Ingvarsson, P.K. and Whitlock, M.C. (2000) Heterosis increases the effective migration rate. Proc. Roy. Soc. Lond. 267, 1321-1326.Google Scholar
  18. Keller, L.F., Jeffery, K.J., Arcese, P., Beaumont, M.A., Hochachka, W.M., Smith, J.N.M. and Bruford, M.W. (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc. Roy. Soc. Lond. 268, 1387-1394.Google Scholar
  19. Kimura, M. (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, England.Google Scholar
  20. Kirkpatrick, M. and Jarne,P. (2000) The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155, 157-167.Google Scholar
  21. Kondrashov, A.S. and Turelli, M. (1992) Deleterious mutations, apparent stabilising selection and maintenance of quantitative variation. Genetics 132, 603-618.Google Scholar
  22. Krebs, J.R. (1977) The significance of song repertoires:the beau geste hypothesis. Anim.Behav. 25, 475-478.Google Scholar
  23. Lacy, R.C. (1987) Loss of genetic diversity from managed populations:interactive effects of drift, mutation,immigration,selection,and population subdivision. Conserv. Biol. 1, 143-158.Google Scholar
  24. Lande, R. (1988) Genetics and Demography in Biological Conservation. Science 241, 1455-1460.Google Scholar
  25. Lande, R. (1994) Risk of population extinction from xation of new deleterious mutations. Evolution 45,1460-1469.Google Scholar
  26. Lande, R. and Barrowclough, G.F. (1987) Effective population size, genetic variation, and their use in population management. In M.E. Soulé (ed.) Viable Populations for Conservation. Cambridge University Press, Cambridge, pp. 87-123.Google Scholar
  27. Lande, R. and Schemske, D.W. (1985) The evolution of self-fertilization and inbreeding depression in plants. 1. Genetic models. Evolution 39, 24-40.Google Scholar
  28. Legendre, S. and Clobert, J. (1995) ULM, Unified Life Models, a software for Conservation and Evolutionary Biologists. J. Appl. Stat. 22, 817-834.Google Scholar
  29. Legendre, S., Clobert, J., Mø ller, A.P. and Sorci, G. (1999) Demographic stochasticity and social mating system in the process of extinction of small populations: The case of Passerines introduced to New Zealand. Am. Nat. 153, 449-453.Google Scholar
  30. Lubow, B.C. (1996) Optimal translocation strategies for enhancing stochastic metapopulation viability. Ecol. Appl. 6, 1268-1280.Google Scholar
  31. Lynch, M., Blanchard, J., Houle, D., Kibota,T., Schultz, S., Vassilieva, L. and Willis, J. (1999) Perspective: spontaneous deleterious mutation. Evolution 53, 645-663.Google Scholar
  32. Lynch, M., Conery, J. and Bürger, R. (1995) Mutational meltdown in sexual populations. Evolution 49, 1067-1080.Google Scholar
  33. Lynch, M. and Gabriel, W. (1990) Mutation load and the survival of small populations. Evolution 44, 1725-1737.Google Scholar
  34. Mills, L.S. and Allendorf, F.W. (1996) The one-migrant-per-generation rule in conservation and management. Conserv. Biol. 10, 1509-1518.Google Scholar
  35. Mills, L.S. and Smouse, P.E. (1994) Demographic consequences of inbreeding in remnants populations. Am.Nat. 144, 412-431.Google Scholar
  36. Newman, D. and Tallmon, D.A. (2001) Experimental evidence for beneficial fitness effects of gene flow in recently isolated populations. Conserv. Biol. 15, 1054-1063.Google Scholar
  37. Pamilo, P., Snaerbjörn, P. and Savolainen, O. (1999) Deleterious mutations can reduce differentiation in small, subdivided populations. Hereditas 130, 257-264.Google Scholar
  38. Pöysä, H., Elmberg, J., Sjöberg, K. and Nummi, P. (1998) Habitat selection rules in breeding mallards (Anas platyrhynchos ):a test of two competing hypotheses. Oecologia 114, 283-287.Google Scholar
  39. Pulliam, H.R. and Danielson, B.J. (1991) Sources,sink,and habitat selection:a landscape perspective on population dynamics. Am.Nat. 137, S50-S66.Google Scholar
  40. Robert, A., Couvet, D. and Sarrazin, F. (2002) Fitness heterogeneity and viability of restored populations. Anim. Conserv. 5, 153-161.Google Scholar
  41. Ronce, O. and Kirkpatrick, M. (2001) When sources become sinks: migrational meltdown in heterogeneous habitats. Evolution 55, 1520-1531.Google Scholar
  42. Saccheri, I.J. and Brakefield, P.M. (2002) Rapid spread of immigrant genomes into inbred populations. Proc. Roy. Soc. Lond. 269, 1073-1078.Google Scholar
  43. Shaffer, M. (1987) Minimum viable population: coping with uncertainty. In M.E. Soulé (ed.) Viable Population for Conservation. Cambridge University Press, Cambridge.Google Scholar
  44. Simmons, M.J. and Crow, J.F. (1977) Mutations affecting tness in Drosophila populations. Ann. Rev.Genet. 11, 49-78.Google Scholar
  45. Slatkin, M. (1987) Gene flow and the geographic structure of natural populations. Science 236, 787-792.Google Scholar
  46. Smith, A.T. and Peacock, M.M. (1990) Conspecific attraction and the determination of meta-population colonization rates. Conserv. Biol. 4, 320-323.Google Scholar
  47. Stamps, J.A. (1988) Conspecific attraction and aggregation in territorial species. Am. Nat. 131, 329-347.Google Scholar
  48. Stamps, J.A. (1991) The effect of conspecifics on habitat selection in territorial species. Behav.Ecol. Sociobiol. 28, 29-36.Google Scholar
  49. Templeton, A.R. and Read, B. (1983) The elimination of inbreeding depression in a captive herd of Speke 's gazelle.In C.M. Schonewald, S.M. Chambers, B. McBryde and L.Thomas (eds) Genetics and Conservation. Benjamin/Cummings, Menlo Park,CA, pp. 241-262.Google Scholar
  50. Thévenon, S. and Couvet, D. (2002) The impact of inbreeding depression on population survival depending on demographic parameters. Anim. Conserv. 5, 53-60.Google Scholar
  51. Wang, J., Caballero, A., Keightley, P.D. and Hill, W.C. (1998) Bottleneck effect on genetic variance: a theoretical investigation of the role of dominance. Genetics 150, 435-447.Google Scholar
  52. Whitlock, M.C., Ingvarsson, P.K. and Hatfield, T. (2000) Local drift load and the heterosis of interconnected populations. Heredity 84, 452-457.Google Scholar
  53. Young, T.P. (1994) Natural die-offs of large mammals: implications for conservation. Conserv. Biol. 8, 410-418.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Alexandre Robert
    • 1
  • Denis Couvet
    • 2
  • François Sarrazin
    • 1
  1. 1.Laboratoire d'EcologieUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Muséum National d'Histoire NaturelleCRBPOParisFrance

Personalised recommendations