Journal of Mathematical Sciences

, Volume 118, Issue 1, pp 4910–4917

Behavior of Automorphic L-Functions at the Center of the Critical Strip

  • O. M. Fomenko

DOI: 10.1023/A:1025537019956

Cite this article as:
Fomenko, O.M. Journal of Mathematical Sciences (2003) 118: 4910. doi:10.1023/A:1025537019956


Let \(\mathcal{F}\) be the Hecke eigenbasis of the space \(S_2 (\Gamma _0 (p))\) of \(\Gamma _0 (p)\)-cusp forms of weight 2. Let p be a prime. Let \(\mathcal{H}_f (s)\) be the Hecke L-series of form \(f \in \mathcal{F}\). The following statements are proved:
$$\sum\limits_{f \in \mathcal{F}} {\mathcal{H}_f \left( {\frac{1}{2}} \right)} = \zeta (2)\frac{p}{{12}} + O\left( {p^{\frac{{31}}{{32}} + \varepsilon } } \right)$$
$$\sum\limits_{f \in \mathcal{F}} {\mathcal{H}_f \left( {\frac{1}{2}} \right)} ^2 = \frac{{\zeta (2)^3 }}{{\zeta (4)}}\frac{p}{{12}}\log p + O\left( {p\log \log p} \right).$$
We also give a correct proof of a previous author's theorem on automorphic L-functions. Bibliography: 12 titles.

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • O. M. Fomenko
    • 1
  1. 1.St.Petersburg Department of theSteklov Mathematical InstituteRussia

Personalised recommendations