Molecular and Cellular Biochemistry

, Volume 252, Issue 1–2, pp 305–329 | Cite as

Clinical implications of matrix metalloproteinases

  • Malay Mandal
  • Amritlal Mandal
  • Sudip Das
  • Tapati Chakraborti
  • Sajal Chakraborti
Article

Abstract

Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important for normal development, wound healing, and a wide variety of pathological processes, including the spread of metastatic cancer cells, arthritic destruction of joints, atherosclerosis, pulmonary fibrosis, emphysema and neuroinflammation. In the central nervous system (CNS), MMPs have been shown to degrade components of the basal lamina, leading to disruption of the blood brain barrier and to contribute to the neuroinflammatory responses in many neurological diseases. Inhibition of MMPs have been shown to prevent progression of these diseases. Currently, certain MMP inhibitors have entered into clinical trials. A goal to the future should be to design selective synthetic inhibitors of MMPs that have minimum side effects. MMP inhibitors are designed in such a way that these can not only bind at the active site of the proteinases but also to have the characteristics to bind to other sites of MMPs which might be a promising route for therapy. To name a few: catechins, a component isolated from green tea; and Novastal, derived from extracts of shark cartilage are currently in clinical trials for the treatment of MMP-mediated diseases.

matrix metalloproteinase matrix metalloproteinase inhibitors angiogenesis aging acute respiratory distress syndome chronic obstructive pulmonary disease rheumatoid arthritis cardiac fibrosis neurodegenerative diseases cancer synthetic inhibitors of MMPs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gross J, Lapiere CM: Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc Natl Acad Sci USA 48: 1014-1022, 1962Google Scholar
  2. 2.
    Chakraborti T, Das S, Mandal M, Mandal A, Chakraborti S: Role of Ca2+ dependent matrix metalloprotease-2 in stimulating Ca2+ ATPase activity under peroxynitrite treatment in pulmonary vascular smooth muscle plasma membrane. IUBMB Life 53: 167-173, 2002Google Scholar
  3. 3.
    Das S, Chakraborti T, Mandal M, Mandal A, Chakraborti S: Role of membrane-associated Ca2+ dependent matrix metalloprotease-2 in the oxidant activation of Ca2+ ATPase by tertiary butylhydroperoxide. Mol Cell Biochem 237: 85-93, 2002Google Scholar
  4. 4.
    Massova I, Kotra LP, Fridman R, Mobashery S: Matrix metalloproteinases: Structure evolution and diversification. FASEB J 12: 1075-1095, 1998Google Scholar
  5. 5.
    Woessner JF Jr: Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5: 2145-2154, 1991Google Scholar
  6. 6.
    Werb Z, Alexander CM, Adler RR: Expression and function of matrix metalloproteinases in development. In: H. Birkedal-Hansen, Z. Werb, H.G. Welgus, H.E. Van Wart (eds). Matrix Metalloproteinases and Inhibitors. Matrix. Spec. Suppl. No. 1. Gustav Fischer, Stuttgart, 1992, pp 337-343Google Scholar
  7. 7.
    Twining SS: Regulation of proteolytic activity in tissues. Crit Rev Biochem Mol Biol 29: 315-383, 1994Google Scholar
  8. 8.
    Ravanti L, Kahari V-M: Matrix metalloproteinases in wound repair. Int J Mol Med 6: 391-407, 2000Google Scholar
  9. 9.
    Girard MT, Matsubara M, Kublin C, Tessier MJ, Cintron C, Fini ME: Stromal fibroblasts synthesize collagenase and stromelysin during long-term tissue remodeling. J Cell Sci 104: 1001-1011, 1993Google Scholar
  10. 10.
    Fini ME, Girard MT: Expression of collagenolytic/gelatinolytic metalloproteinases by normal cornea. Invest Opthalmol Vis Sci 31: 1779-1788, 1990Google Scholar
  11. 11.
    Talhouk RS, Bissell MJ, Werb Z: Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol 118: 1271-1282, 1992Google Scholar
  12. 12.
    Stetler-Stevenson WG, Liotta LA, Kleiner DE: Extracellular matrix-6. Role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 7: 1434-1441, 1993Google Scholar
  13. 13.
    Birkedal-Hansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA: Matrix metalloproteinases: A review. Crit Rev Oral Biol Med 4: 197-250, 1993Google Scholar
  14. 14.
    Salamonsen LA, Zhang J, Hampton A, Lathbury L: Regulation of matrix metalloproteinases in human endometrium. Human Reprod 15: 112-119, 2000Google Scholar
  15. 15.
    Rodgers WH, Osteen KG, Matrisian LM, Navre M, Giudice LC, Gorstein F: Expression and localization of matrilysin, a matrix metalloproteinase, in human endometrium during the reproductive cycle. Am J Obstet Gynecol 168: 253-260, 1993Google Scholar
  16. 16.
    Rodgers WH, Matrisian LM, Giudice LC, Dsupin B, Cannon P, Svitek C, Gorstein F, Osteen KG: Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest 94: 946-953, 1994Google Scholar
  17. 17.
    Matrisian LM: Matrix metalloproteinase gene expression. Ann NY Acad Sci 732: 42-50, 1994Google Scholar
  18. 18.
    Inoue M, Kratz G, Haegerstrand A, Stahle-Backdahl M: Collagenase expression in rapidly induced in wound-edge keratinocytes after acute injury in human skin, persists during healing, and stops at reepithelialization. J Invest Dermatol 104: 479-483, 1995Google Scholar
  19. 19.
    Sudbeck BD, Parks WC, Welgus HG, Pentland AP: Collagen stimulated induction of keratinocyte collagenase is mediated via tyrosin kinase and protein kinase C activities. J Biol Chem 269: 30022-30029, 1994Google Scholar
  20. 20.
    Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC: The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 137: 1445-1457, 1997Google Scholar
  21. 21.
    DiColandrea T, Wang L, Wille J, D'Armiento J, Chada KK: Epidermal expression of collagenase delays wound healing in transgenic mice. J Invest Dermatol 111: 1029-1033, 1998Google Scholar
  22. 22.
    Stricklin GP, Li L, Jancic V, Wenezak BA, Nanney LB: Localization of mRNAs representing collagenase and TIMP in sections of healing human burn wounds. Am J Pathol 143: 1657-1666, 1993Google Scholar
  23. 23.
    Lijnen HR: Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Moscow) 67: 92-98, 2002Google Scholar
  24. 24.
    Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC: Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113-117, 1999Google Scholar
  25. 25.
    Ganz T: Immunology: Defensins and host defense. Science 286: 420-421, 1999Google Scholar
  26. 26.
    Parks WC, Shapiro SD: Matrix metalloproteinases in lung biology. Respir Res 2: 10-119, 2001Google Scholar
  27. 27.
    Dunsmore SE, Saarialho-Kere UK, Roby JD, Wilson CL, Matrisian LM, Welgus HG, Parks WC: Matrilysin expression and function in airway epithelium. J Clin Invest 102: 1321-1331, 1998Google Scholar
  28. 28.
    Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ: Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139: 1861-1872, 1997Google Scholar
  29. 29.
    Betsuyaku T, Fukuda Y, Parks WC, Shipley JM, Senior RM: Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am J Pathol 157: 525-535, 2000Google Scholar
  30. 30.
    Legrand C, Gilles C, Zahm JM, Polette M, Buisson AC, Kaplan H, Birembaut P, Tournier JM: Airway epithelial cell migration dynamics: MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 146: 517-529, 1999Google Scholar
  31. 31.
    Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME: Arterial alterations with aging and high blood pressure. Arterioscler Thromb 13: 90-97, 1993Google Scholar
  32. 32.
    Li Z, Froehlich J, Galis ZS, Lakatta EG: Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 33: 116-123, 1999Google Scholar
  33. 33.
    Hariri RJ, Alonso DR, Hajjar DP, Coletti D, Weksler ME: Aging and atherosclerosis, I: Development of myointimal hyperplasmia after endothelial cells injury. J Exp Med 164: 1171-1178, 1986Google Scholar
  34. 34.
    Li Z, Cheng H, Lederer WJ, Froeklich J, Lakatta EG: Enhanced proliferation and migration and altered cytoskeletal and contractile proteins in aortic early passage smooth muscle cells from old rats. Exp Mol Pathol 64: 1-11, 1997Google Scholar
  35. 35.
    McCaffrey TA, Falcon DJ: Evidence for an age-associated dysfunction in the antiproliferative response to transforming growth factor-β in vascular smooth muscle cells. Mol Biol Cell 4: 315-322, 1993Google Scholar
  36. 36.
    Pauly RR, Passaniti A, Bilato C, Monticone R, Cheng L, Papadopoulo N, Gluzband YA, Smith L, Weinsterin C, Lakatta EG, Crow M: Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ Res 75: 41-54, 1994Google Scholar
  37. 37.
    Jenkins GM, Crow MT, Bilato C, Gluzband Y, Ryu W-S, Li Z, Stetlet-Stevenson W, Nater C, Froejlich JP, Lakatta EG, Cheng L: Increased expression of membrane-type matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Circulation 97: 82-89, 1998Google Scholar
  38. 38.
    Li Z, Li L, Zielke HR, Cheng L, Xiao R, Crow MT, Stetler-Stevenson WG, Froehlich J, Lakatta EG: Increased expression of 72 kD type IV collagenase (MMP-2) in human aortic atherosclerotic lesions. Am J Pathol 148: 121-128, 1996Google Scholar
  39. 39.
    Galis ZS, Sukhova GK, Lark MW, Libby P: Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 942: 2493-2503, 1994Google Scholar
  40. 40.
    Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG: Human 92-and 72-kilodalton type IV collagenase are elastases. J Biol Chem 266: 7870-7875, 1991Google Scholar
  41. 41.
    Shapiro SD, Griffin GL, Gilbert DJ, Jenkins NA, Copeland NG, Welgus HG, Senior RM, Ley TJ: Molecular cloning, chromosomal localization and bacterial expression of a murine macrophage metallelastage. J Biol Chem 267: 4664-4671, 1992Google Scholar
  42. 42.
    Westermarck J, Kahari V-M: Regulation of matrix metalloproteinases in tumor invasion. FASEB J 13: 781-792, 1999Google Scholar
  43. 43.
    Mignatti P, Rifkin DB: Plasminogen activators and matrix metalloproteinases in angiogenesis. Enz Prot 49: 117-137, 1996Google Scholar
  44. 44.
    Fisher C, Gilbertson-Beadling S, Powers EA, Petzold G, Poorman R, Mitchell MA: Interstitial collagenase is required for angiogenesis in vitro. Dev Biol 162: 499-510, 1994Google Scholar
  45. 45.
    Ausprunk DH, Folkman J: Migration and proliferation of endothelin cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53-65, 1977Google Scholar
  46. 46.
    Moses MA, Langer R: Angiogenesis inhibitors. Biotechnology 9: 630-639, 1991Google Scholar
  47. 47.
    Zucker S, Conner C, DiMassmo BI, Ende H, Drews M, Seiki M, Bahou WF: Thrombin induces the activation of progelatinase A in vascular endothelial cells. J Biol Chem 270: 23730-23738, 1995Google Scholar
  48. 48.
    Stetler-Stevension WG, Aznavoorian S, Liotta LA: Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9: 541-573, 1993Google Scholar
  49. 49.
    Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. New Engl J Med 324: 1-8, 1991Google Scholar
  50. 50.
    Ray JM, Stetler-Stevenson WG: The role of matrix metalloproteinases and their tissue inhibitors in tumor invasion, metastasis and angiogenesis. Eur Respir J 7: 2062-2072, 1994Google Scholar
  51. 51.
    Mignatti P, Robbins E, Rifkin DB: Tumor invasion through the human amniotic membrane: Requirement for a proteinase cascade. Cell 47: 487-498, 1986Google Scholar
  52. 52.
    Schnaper HW, Grant DS, Stetler-Stevenson WG, Fridman R, D'Orazi G, Murphy AN, Bird RE, Hoythya M, Fuerst TR, French DL: Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 156: 235-234, 1993Google Scholar
  53. 53.
    Herouy Y, May AE, Pornschlegal G, Steller C, Grenz H, Preissner KT, Schopt E, Norgauer J, Vanscheidt W: Lipodermatosclerosis is characterized by elevated expression and activation of matrix metalloproteinases: Implications for venous ulcer formation. J Invest Dermatol 111: 822-827, 1998Google Scholar
  54. 54.
    Vaalumo M, Mattila L, Johansson N, Kariniemi A-L, Karjalainen-Lindsberg M-L, Kahari V-M, Saarialho-Kare U: Distinct population of stromal cells express collagenase-3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally henking wounds. J Invest Dermatol 109: 96-101, 1997Google Scholar
  55. 55.
    Yager DR, Zhang LY, Liang HX, Diegclmann RF, Cohen IK: Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol 207: 743-748, 1996Google Scholar
  56. 56.
    Bullen EC, Langaker MT, Updike DL, Benton R, Ludin D, Hon Z, Howard EM: Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol 104: 236-240, 1995Google Scholar
  57. 57.
    Wysocki AB, Kusakabe AO, Chang S, Tuan TL: Temporal expression of urokinase plasminogen activator, plasminogen activator inhibitor and gelatinase B in chronic wound fluid witches from a chronic to acute wound profile with progression to healing. Wound Repair Regen 7: 154-165, 1999Google Scholar
  58. 58.
    Nwomeh BC, Liang HX, Cohen IK, Yager DR: MMP-8 is the predominant collagenase in healing wounds and non-healing ulcers. J Surg Res 81: 189-195, 1999Google Scholar
  59. 59.
    Arthur MJP: Fibrogenesis II metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol 279: G245-G249, 2000Google Scholar
  60. 60.
    Jhonson S, Knox A: Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. Lung Cell Mol Physiol 21: L1109-L1117, 1999Google Scholar
  61. 61.
    O'Connor CMO, Fitzerald MX: Matrix metalloproteinases and lung disease. Thorax 49: 602-609, 1994Google Scholar
  62. 62.
    Ricou B, Nicod L, Lacraz S, Welgus HG, Suter PM, Dayer J-M: Matrix metalloproteinases and TIMP in acute respiratory distress syndrome. Am J Respir Crit Med 154: 346-352, 1996Google Scholar
  63. 63.
    Matrinet Y, Rom WN, Grofendorst GR, Martin GR, Crystal RG: Exaggerated spontaneous release of platelet-derived growth factor by alveolar macrophages from patients with idiopathic pulmonary fibrosis. N Engl J Med 317: 202-209, 1987Google Scholar
  64. 64.
    Border WA, Ruoslahti E: Transforming growth factor β in discuss: The dark side of tissue repair. J Clin Invest 90: 1-4, 1992Google Scholar
  65. 65.
    Lacraz S, Isler EV, Welgus HG, Dayer J-M: Direct contact between T-lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem 269: 22027-22033, 1994Google Scholar
  66. 66.
    Mereer RR, Crapo JD: Spatial distribution of collagen and elastin fibres ion the lungs. J Appl Physiol 69: 756-765, 1990Google Scholar
  67. 67.
    Finlay GA, O'Driscoll LR, Russell KJ, D'Arey EM, Masterson JB, Fitzerald MX, O'Connor CM: Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Res Crit Care Med 156: 240-247, 1997Google Scholar
  68. 68.
    Zheng T, Zhu Z, Wang Z, Homer RJ, Me B, Riese RJ, Chapman HA, Shapiro SD, Elias JA: Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase and cathepsin dependent emphysema. J Clin Invest 106: 1081-1093, 2000Google Scholar
  69. 69.
    Haumatani RD, Kobayashi DK, Senior RM, Shapiro SD: Requirement for macrophage elastage for cigarette smoke induced emphysema. Science 277: 2002-2004, 1997Google Scholar
  70. 70.
    Liu Z, Zhon X, Shapiro SD, Shipley JM, Diaz LA, Senior RM, Werb Z: The serpin α1-protease inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102: 647-655, 2000Google Scholar
  71. 71.
    Silence J, Collen D, Lijnen HR: Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res 90: 897-903, 2002Google Scholar
  72. 72.
    Davies MJ, Richardson PD, Wolf N, Katz DR, Mann J: Risk of thrombosis in human atherosclerotic plaques: Role of extracellular lipid, macrophage and smooth muscle cell content. Br Heart J 69: 377-381, 1993Google Scholar
  73. 73.
    Libby P: Molecular basis of the acute coronary syndrome. Circulation 91: 2844-2850, 1995Google Scholar
  74. 74.
    Ross R: Atherosclerosis: An inflammatory disease. N Engl J Med 340: 115-126, 1999Google Scholar
  75. 75.
    Holloran BG, Baster BT: Pathogenesis of aneurysms. Semin Vasc Surg 8: 85-92, 1995Google Scholar
  76. 76.
    Patel MI, Hardman DT, Fisher CM, Appleberg M: Current views on the pathogenesis of abdominal aortic aneurysm. J Am Cell Surg 181: 371-382, 1995Google Scholar
  77. 77.
    Dollery CM, McEwan JR, Henney AM: Matrix metalloproteinase and cardiovascular disease. Circ Res 77: 863-868, 1995Google Scholar
  78. 78.
    Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senios RM, Thompson RW: Targetted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 105: 1641-1649, 2000Google Scholar
  79. 79.
    Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM: Identification of 92 kDa gelatinase in human coronary atherosclerosis lesions: Association of active enzyme synthesis with unstable angina. Circulation 21: 2125-2131, 1994Google Scholar
  80. 80.
    Thompson RW, Holmes DR, Merters RA, Liau S, Botney MD, Mecham RP, Welgus HG, Parks WC: Production and localization of 92 kDa gelatinase in abdominal aortic aneurysms: An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest 96: 318-326, 1995Google Scholar
  81. 81.
    Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissay E, Vnemuri N, Lark MW, Amento E, Libby P: Cytokine stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75: 181-189, 1994Google Scholar
  82. 82.
    Barath P, Fishbein MC, Cao J, Berenson J, Helfant RH, Fonester JS: Detection and localization of tumor necrosis factor in human atheroma. Am J Cardiol 65: 297-302, 1990Google Scholar
  83. 83.
    Moyer CF, Sajulti D, Tulli H, Williams JK: Synthesis of IL-1 alpha and IL-1 beta by arteriol cells in atherosclerosis. Am J Pathol 138: 951-960, 1991Google Scholar
  84. 84.
    Stemme S, Hasson GK: Immune mechanisms in atherosclerosis. Coron Artery Dis 5: 216-222, 1994Google Scholar
  85. 85.
    Saven P, Welgus HG, Koranen PT: TNF-α and IL-1β selectively induce expression of 92 kDa gelatinase by human macrophages. J Immunol 157: 4159-4165, 1996Google Scholar
  86. 86.
    Galis ZS, Khatri JJ: Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ Res 90: 251-62, 2002Google Scholar
  87. 87.
    Romanic AM, Madri JA: The induction of 72-kDa gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent. J Cell Biol 125: 1165-1178, 1994Google Scholar
  88. 88.
    Rosenberg GA, Estrada EY, Dencoff JE: Matrix metalloproteinses and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29: 2189-2195, 1998Google Scholar
  89. 89.
    Xu XP, Meisel SR, Ong JM, Kaul S, Cercek B, Rajavashisth TB, Sharifi B, Shah PK: Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation 99: 993-998, 1999Google Scholar
  90. 90.
    Wesley RB, Meng X, Godin D, Galis ZS: Extracellular matrix modulates macrophage functions characterized to atheroma: Collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler Thromb Vasc Biol 18: 432-440, 1998Google Scholar
  91. 91.
    Mach F, Schonbeck U, Bonnefoy JY, Pober JS, Libby P: Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: Induction of collagenase, stomelysin, and tissue factor. Circulation 96: 396-399, 1997Google Scholar
  92. 92.
    Galis ZS: Metalloproteinases in remodeling of vascular extracellular matrix. Fibrinolysis Proteolysis 13: 54-63, 1999Google Scholar
  93. 93.
    Galis ZS, Kranzhofer R, Fenton JW, Libby P: Thrombin promotes activation of matrix metalloproteinase-2 produced by cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17: 483-489, 1997Google Scholar
  94. 94.
    Galis ZS: Molecular mechanisms of plaque weakening and disruption. In: D. Brown (eds). Cardiovascular Plaque Rupture. Marcel Dekker Inc., New York, 2002, pp 79-121Google Scholar
  95. 95.
    Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW: Release of gelatinase A during platelet activation mediates aggregation. Nature (London) 386: 616-619, 1997Google Scholar
  96. 96.
    Rajavashisth TB, Liao JK, Galis ZS, Tripathi S, Laufs U, Tripathi J, Chai NN, Xu XP, Jovinge S, Shah PK, Libby P: Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase. J Biol Chem 274: 11924-11929, 1999Google Scholar
  97. 97.
    Rajavashisth TB, Xu X-P, Jovinge S, Meisel S, Xu X-O, Chai N-N, Fishbein MC, Kaul S, Cercek B, Sharifi B, Shah PK: Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: Evidence for activation by proinflammatory mediators. Circulation 99: 3103-3109, 1999Google Scholar
  98. 98.
    Kieseier BC, Schneider C, Clements JM, Gearing AJ, Gold R, Toyka KV, Hartung HP: Expression of specific matrix metalloproteinases in inflammatory myopathies. Brain 124: 341-51, 2001Google Scholar
  99. 99.
    Spinale FG: Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res 90: 520-530, 2002Google Scholar
  100. 100.
    Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG: Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: A current perspective. Cardiovasc Res 53: 822-830, 2002Google Scholar
  101. 101.
    Bradham WS, Moe G, Wendt KA, Scott AA, Konig A, Romanova M, Naik G, Spinale FG: TNF-alpha and myocardial matrix metalloproteinases in heart failure: Relationship to LV remodeling. Am J Physiol Heart Circ Physiol 282: H1288-H1295, 2002Google Scholar
  102. 102.
    Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L: Time-dependent changes in matrixmetalloproteinase activity and expression during the progression of congestive heart failure; relation to ventricular and myocyte function. Circ Res 82: 482-495, 1998Google Scholar
  103. 103.
    Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ, Spinale FG: Increased matrix metalloproteinase activity and selective up-regulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97: 1708-1715, 1998Google Scholar
  104. 104.
    Nagatomo Y, Carabello BA, Coker ML, McDermott PJ, Nemoto S, Hamawaki M, Spinale FG: Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol 278: H151-H161, 2000Google Scholar
  105. 105.
    Spinale FG, Krombach RS, Coker ML, Mukherjee R, Thomas CV, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT: Matrix metalloproteinase inhibition during developing congestive heart failure in pigs; effects on left ventricular geometry and function. Circ Res 85: 364-376, 1999Google Scholar
  106. 106.
    Tomita M, Spinale FG, Crawford FA, Zile MR: Changes in left ventricular volume, mass and function during development and regression of supraventricular tachycardia induced cardiomyopathy; disparity between recovery of systolic vs. diastolic function. Circulation 83: 635-644, 1991Google Scholar
  107. 107.
    Lee RT, Libby P: Matrix metalloproteinases: not-so-innocent bystanders in heart failure. J Clin Invest 106: 827-828, 2000Google Scholar
  108. 108.
    Nagase H, Woessner JF: Matrix metalloproteinases. J Biol Chem 74: 21491-21494, 1999Google Scholar
  109. 109.
    Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ: A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102: 1944-1949, 2000Google Scholar
  110. 110.
    Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM: Myocardial extracellular matrix remodeling in transgenic mice overexpression tumor necrosis factor-alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97: 12746-12751, 2000Google Scholar
  111. 111.
    Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA: Tumor necrosis factor-alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J Biol Chem 269: 26396-26401, 1994Google Scholar
  112. 112.
    Fini ME, Cook JR, Mohan R, Brinckerhoff CE: Regulation of matrix metalloproteinase gene expression. In: W.C. Parks, R.P. Mecham (eds). Matrix Metalloproteinases. Academic Press, San Diego, CA, 1998Google Scholar
  113. 113.
    Hoit BD, Takeishi Y, Cox MJ, Gabel M, Kirkpatrick D, Walsh RA, Tyagi SC: Remodeling of the left atrium in pacing-induced atrial cardiomyopathy. Mol Cell Biochem 238: 145-150, 2002Google Scholar
  114. 114.
    Li YT, McTierman CF, Feldman AM: Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardivasc Res 46: 214-224, 2000Google Scholar
  115. 115.
    Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ: Matrix metalloproteinase activity expression in infarcted, noninfarcted and delated cardiomyopathic human hearts. Mol Cell Biochem 155: 13-21, 1996Google Scholar
  116. 116.
    Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Amstrong PW: fibrillar collagen and remodelling of dilated canine left ventricle. Circulation 82: 1387-1401, 1990Google Scholar
  117. 117.
    Weber KT, Anversa P, Armstrong PW, Brilla CG, Burnett JC, Cruikshank JM, Devereux RB, Giles TD, Corsgaard N, Leier CV, Mendelsohn FAO, Motz WH, Mulvany MJ, Strauer RE: Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 20: 3-16, 1992Google Scholar
  118. 118.
    Weber KT: Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 13: 1637-1652, 1989Google Scholar
  119. 119.
    Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FG: Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284: H364-H371, 2003Google Scholar
  120. 120.
    Eglibali M, Tomek R, Sukhatme VP, Woods C, Bhambi B: Differential effects of transforming growth factor β and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibriller collagen mRNA and expression of early transcription factors. Circ Res 69: 483-490, 1991Google Scholar
  121. 121.
    Sun Y, Zhang JQ, Zhand J, Ramires FJ: Angiotensin II, TGFβ-1 and repair in the infarcted heart. J Mol Cell Cardiol 30: 1559-1569, 1998Google Scholar
  122. 122.
    Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A: Early transduction of TGFβ-1 via angiotensin II type I receptor contributes to cardiac fibrosis induced by long term blockade of nitric oxide synthesis in rats. Hypertension 32: 273-279, 1998Google Scholar
  123. 123.
    Villeneal FJ, Lee AA, Dillmann WH, Giordoni FJ: Adenovirus mediated over expression of human transforming growth factor β-I in rat cardiac fibroblasts, myocytes and cells. J Mol Cell Cardiol 28: 735-742, 1996Google Scholar
  124. 124.
    Humphries SE, Montgomery H, Ye S, Henney AM: Genetic tests for coronary disease risk: The fibrinogen and stromelysin genes as examples. In: I. Day, NH Humphries (eds). Genetics of Common Diseases: Future Therapeutic and Diagnostic Possibilities. Bios Scientific Publishers, Oxford, 1997, pp 151-170Google Scholar
  125. 125.
    Terashima M, Akita H, Kanazawa K, Inoue N, Yamada S, Ito K, Matsuda Y, Takai E, Iwai C, Kurogane H, Yoshida Y, Yokoyama M: Stromelysin promoter 5A/6A polymorphism is associated with acute myocardial infarction. Circulation 99: 2717-2719, 1999Google Scholar
  126. 126.
    Ye S, Eriksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM: Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem 271: 13055-13060, 1996Google Scholar
  127. 127.
    Huhtala P, Tuuttila A, Chow LT, Lohi J, Keski-Oja J, Tryggvason K: Complete structure of the human gene for 92 kDa type IV collagenase: Divergent regulation of expression for the 92 and 72 kDa enzyme genes in HT-1080 cells. J Biol Chem 266, 16485-16490, 1991Google Scholar
  128. 128.
    St. Jean PL, Zhang XC, Hart BK, Lamlum H, Webster MW, Steed DL, Henney AM, Ferrell RE: Characterization of a dinucleotide repeat in the 92 kDa type IV collagenase gene (CLG4B), localization of CLG4B to chromosome 20 and the role of CLG 4B in aortic aneursomal disease. Ann Hum Genet 59: 17-24, 1995Google Scholar
  129. 129.
    Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D: Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genet 17: 439-444, 1997Google Scholar
  130. 130.
    Henney AM, Ye S, Zhang B, Jormsjo S, Whatling C, Eriksson P, Hamsten A: Genetic diversity in the matrix metalloproteinase family. Effects on function and disease progression. Ann NY Acad Sci 902: 27-37, 2000Google Scholar
  131. 131.
    Chen H, Li D, Mehta JL: Modulation of matrix metalloproteinase-1, its tissue inhibitor, and nuclear factor-kappa B by losartan in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 39: 332-339, 2002Google Scholar
  132. 132.
    Weber H, Webb ML, Serafino R, Taylor DS, Moreland S, Norman J, Molloy CJ: Endothelin-1 and angiotensin-II stimulate delayed mitogenesis in cultured rat aortic smooth muscle cells: Evidence for common signaling mechanisms. Mol Endocrinol 8: 148-158, 1994Google Scholar
  133. 133.
    Geisterfer AAT, Peach MJ, Owens GK: Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62: 749-756, 1988Google Scholar
  134. 134.
    Itoh H, Pratt RE, Dzau VJ: Interaction of atrial natriuretic polypeptide and angiotensin II on protooncogene expression and vascular cell growth. Biochem Biophys Res Commun 176: 1601-1609, 1991Google Scholar
  135. 135.
    Itoh H, Mukoyama M, Pratt RE, Gibbons GH, Dzau VJ: Multiple autocrine growth factors modulate vascular smooth muscle response to angiotensin II. J Clin Invest 91: 2268-2274, 1993Google Scholar
  136. 136.
    Dzau VJ: cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens 12: S3-S10, 1994Google Scholar
  137. 137.
    Elferink JG, DeKoster BM: The stimulation of human neutrophil migration by angiotensin: Its dependence on Ca2+ and the involvement of cyclic GMP. Br J Pharmacol 121: 643-648, 1997Google Scholar
  138. 138.
    Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL: Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type I receptor activation. Circ Res 84: 1043-1049, 1999Google Scholar
  139. 139.
    Kranzhofer R, Browatzki M, Schmidt J, Kubler W: Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappa B in human monocytes. Biochem Biophys Res Commun 257: 826-828, 1999Google Scholar
  140. 140.
    Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D: Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 97: 1715-1722, 1996Google Scholar
  141. 141.
    Hernandez-Presa M, Bustos C, Ortego M, Tunon J, Renedo G, Ruiz-Ortega M, Egido J: Angiotensin-converting enzyme inhibitor prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95: 1532-1541, 1997Google Scholar
  142. 142.
    Maziere C, Auclair M, Djavaheri-Mergny M, Packer L, Maziere JC: Oxidized low density lipoprotein induces activation of the transcription factor NF kappa B in fibroblasts, endothelial and smooth muscle cells. Biochem Mol Biol Int 39: 1201-1207, 1996Google Scholar
  143. 143.
    Schieffer B, Schieffer E, Hilfiker-Kleiner D: Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation 101: 1372-1378, 2001Google Scholar
  144. 144.
    Takai S, Shiota N, Kobayashi S, Matsumura E, Miyazaki M: Induction of chymase that forms angiotensin II in the monkey atherosclerotic aorta. FEBS Lett 412: 86-90, 1997Google Scholar
  145. 145.
    Coker ML, Jolly JR, Joffs C, Etoh T, Holder JR, Bond BR, Spinale FG: Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol Heart Circ Physiol 281: H543-H551, 2001Google Scholar
  146. 146.
    Senzaki H, Paolocci N, Gluzband YA, Lindsey ML, Janicki JS, Crow MT, Kass DA: Beta-blockade prevents sustained metalloproteinase activation and diastolic stiffening induced by angiotensin II combined with evolving cardiac dysfunction. Circ Res 86: 807-815, 2000Google Scholar
  147. 147.
    Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C: Angiotensin II activates nuclear factor-kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J Mol Cell Cardiol 32: 1767-1778, 2000Google Scholar
  148. 148.
    Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J: Angiotensin II activates nuclear factor-kappa B through AT(1) and AT(2) in vascular smooth muscle cells: Molecular mechanisms. Circ Res 86: 1266-1272, 2000Google Scholar
  149. 149.
    Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB: Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappa B activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 20: 645-651, 2000Google Scholar
  150. 150.
    Close DR: Matrix metalloproteinase inhibitors in rheumatic diseases. Ann Rheum Dis 60: iii62-iii67, 2001Google Scholar
  151. 151.
    Jackson C, Nguyen M, Arkell J, Sambrook P: Selective matrix metalloproteinase (MMP) inhibitor in rheumatoid arthritis-targetting gelatinase A activation. Inflamm Res 50: 183-186, 2001Google Scholar
  152. 152.
    Hayakawa T, Yamashita K, Kodama S, Iwata H, Iwata K: Tissue inhibitor of metalloproteinases and collagenase activity in synovial fluid of human rheumatoid arthritis. Biomed Res 12: 169-173, 1991Google Scholar
  153. 153.
    Mac Naul KL, Chartraen N, Lark M, Tocci MJ, Hutchinson MI: Discordinate expression of stromeolysin collagenase and tissue inhibitor of metalloproteinase-I in rheumatoid human synovial fibroblasts. Synergistic effect of interleuin-1 and tumor necrosis factor on stromeolysin expression. J Biol Chem 265: 17238-17245, 1990Google Scholar
  154. 154.
    McCachren SS, Haynes BF, Niedel JA: Localization of collagenase m RNA in rheumatoid arthritis synovium by in situ hybridization histochemistry. J Clin Invest 10: 19-27, 1990Google Scholar
  155. 155.
    McCachren SS: Expression of metalloproteinases and metalloproteinase inhibitor in human arthritic synovium. Arth Rheum 34: 1085-1093, 1991Google Scholar
  156. 156.
    Case JP, Lafyatis R, Remmen EE, Kumkumian GK, Wilder RL: A transformation associated metalloproteinase secreted by phenotypically invasive synoviolytes. Am J Pathol 135: 1055-1064, 1989Google Scholar
  157. 157.
    Case JP, Sano LR, Remmen EE, Kumkumian GK, Wilder RL: Transin/stomeolysin expression in the synovium of rats with experimental evosine arthritis. In situ localization and kinetics of expression of the transformation associated metalloproteinases in euthymic and athymic Lewis rats. J Clin Invest 84: 1731-1740, 1989Google Scholar
  158. 158.
    Overall CM, Sodeu J, McCuloch AG, Biren P: Evidence for polymorphonuclear leucocyte collagenase and 92 kDa gelatinase in gingival crevicular fluid. Infect Immunol 59: 4687-4692, 1991Google Scholar
  159. 159.
    Villela B, Cogen RB, Barlolucci AA, Birkedel-Hanson H: Collagenolytic activity in crevicular fluid with patient with chronic adult peridontitis, localized juvenile oeriodotitis and gingivilis and from healthy control subjects. J Periodent Res 22: 381-389, 1987Google Scholar
  160. 160.
    Robertson PB, Cobb CM, Taylor RE, Fullmer HM: Activation of latent collagenase by microbial plaque. J Periodent Res 9: 81-83, 1974Google Scholar
  161. 161.
    Lyons JG, Lin H-Y, Salo T, Larjara H, Decarlo A, Birkedel-Hanson H: Expression of collagen cleaving matrix metalloproteinases by keratinocytes. Effects of growth factors and cytokines of microbial mediators. In: S. Hamada, S.C. Holt, J.R. McGhee (eds). Periodontal Disease: Pathogens and Host Immune Responses. Quintessence Publishing Co., Tokyo, 1991, pp 291-305Google Scholar
  162. 162.
    Masuda MP, Person R, Kenney JS, Lee SW, Page RC, Allison AC: Measurement of interleukin 1α and 1β in gingiva crevicular fluid: Implication for the pathogenesis of peridontal disease. J Periodontal Res 25: 156-163, 1990Google Scholar
  163. 163.
    Basset P, Okada A, Chenard MP, Kannan R, Sheell F, Anglard P, Belloeq JP, Rio MC: Matrix metalloproteinases as stromal effects of human carcinoma progression: Theraputical implication. Matrix Biol 15: 535-541, 1997Google Scholar
  164. 164.
    Overall CM, Lopez-Otin C: Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nature Rev 2: 657-672, 2002Google Scholar
  165. 165.
    Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM: Matrilysin (MMP-7) expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 3: 459-468, 2001Google Scholar
  166. 166.
    McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM: Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289: 1202-1206, 2000Google Scholar
  167. 167.
    Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer 2: 163-175, 2002Google Scholar
  168. 168.
    Johnsen M, Lund LR, Romer J, Almholt K, Danø K: Cancer invasion and tissue remodeling: Common themes in proteolytic matrix degradation. Curr Opin Cell Biol 10: 667-671, 1998Google Scholar
  169. 169.
    Johansson N, Vaalamo M, Grenman S, Hietanen S, Klemi P, Saarialho-Kere U, Kahari V-M: Collagenase-3 (MMP-13) is expressed by tumor cells in invasive vulvar squamous cell carcinomas. Am J Pathol 154: 469-480, 1999Google Scholar
  170. 170.
    Guo H, Zucker S, Gordon MK, Toole BP, Biswas C: Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem 272: 24-27, 1997Google Scholar
  171. 171.
    Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ, Sasaguri Y, Mori Y: Degradation of interleukin-1β by matrix metalloproteinases. J Biol Chem 271: 14657-14660, 1996Google Scholar
  172. 172.
    Moss ML, Jin S-LC, Milla ME, Burkhart W, Carter HL, Chen W-J, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su J-L, Warner J, Willard D, Becherer JD: Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature (London) 385: 733-736, 1997Google Scholar
  173. 173.
    Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knauper V, Docherty AJP, Murphy G: TNF-α converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435: 39-44, 1998Google Scholar
  174. 174.
    Bolon I, Gouyer V, Devouassoux M, Vandenbunder B, Wernert N, Moro D, Brambilla C, Brambilla E: Expression of c-ets-1, collagenase 1, and urokinase-type plasminogen activator genes in lung carcinomas. Am J Pathol 147: 1298-1310, 1995Google Scholar
  175. 175.
    Bolon I, Brambilla E, Vandenbunder B, Robert C, Lantu-Ejoul S, Brambilla C: Changes in the expression of matrix proteases and of the transcription factor c-Ets-1 during progression of precancerous bronchial lesions. Lab Invest 75: 1-13, 1996Google Scholar
  176. 176.
    Johansson N, Airola K, Grenman R, Kariniemi A-L, Saarialho-Kere U, Kahari V-M: Expression of collagenase-3 (matrix metalloproteinase-13) in squamous cell carcinomas of the head and neck. Am J Pathol 151: 499-508, 1997Google Scholar
  177. 177.
    Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature (London) 370: 61-65, 1994Google Scholar
  178. 178.
    Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M: Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett 393: 101-104, 1996Google Scholar
  179. 179.
    Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH: Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149: 273-282, 1996Google Scholar
  180. 180.
    Polette M, Nawrocki B, Gilles C, Sato H, Seiki M, Tournier JM, Birembaut P: MT-MMP expression and localisation in human lung and breast cancers. Virchows Arch 428: 29-35, 1996Google Scholar
  181. 181.
    Murphy G, Knauper V: Relating matrix metalloproteinase structure to function: Why the ‘hemopexin’ domain? Matrix Biol 15: 511-518, 1996Google Scholar
  182. 182.
    Coussens LM, Werb Z: Matrix metalloproteinases and the development of cancer. Chem Biol 3: 895-904, 1996Google Scholar
  183. 183.
    Wang H, Rodgers W, Chimell M, Svitek C, Schwartz H: Osteosarcoma oncogene expression detected by in situ hybridization. J Orthoped Res 13: 671-678, 1995Google Scholar
  184. 184.
    Wright J, McDonnell S, Portella G, Bowden G, Balmain A, Matrisian L: A switch from stromal to tumor cell expression of stromelysin-1 mRNA associated with the conversion of the squamous to spindle carcinoma during mouse skin tumor progression Mol Carcinogen 10: 207-215, 1994Google Scholar
  185. 185.
    Rosenberg GA: Matrix metalloproteinases in neuroinflammation. Glia 39: 279-291, 2002Google Scholar
  186. 186.
    Ilzecka J, Stelmasiak Z, Dobosz B: Matrix metalloproteinase-9 (MMP-9) activity in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Neurochir Pol 35: 1035-1043, 2001Google Scholar
  187. 187.
    Beuche W, Yushchenko M, Mader M, Maliszewska M, Felgenhauer K, Weber F: Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11: 3419-3422, 2000Google Scholar
  188. 188.
    Trapp B, Peterson J, Ranasohalf R, Rudick R, Mork. S, Bo L: Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278-285, 1998Google Scholar
  189. 189.
    Clements J, Cossins J, Wells G, Corkill D, Hellrich K, Wood L, Piggot R, Stablar G, Ward G, Gearing A, Miller K: Matrix metalloproteinase and tumor necrosis factor-α inhibitor. J Neuroimmunol 74: 85-94, 1997Google Scholar
  190. 190.
    Johnson LL, Dyer R, Hupe DJ: Matrix metalloproteinases. Curr Opin Chem Biol 2: 466-471, 1998Google Scholar
  191. 191.
    Todor DR, Lewis I, Bruno G, Chyatte D: Identification of a serum gelatinase associated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2. Stroke 29: 1580-1583, 1998Google Scholar
  192. 192.
    Butler GS, Will H, Atkinson SJ, Murphy G: Membrane type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem 244: 653-657, 1997Google Scholar
  193. 193.
    Will H, Atkinson SJ, Butler GS, Smith B, Murphy G: The soluble catalytic domain of membrane type-1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation: Regulation by TIMP-2 and TIMP-3. J Biol Chem 271: 17119-17123, 1996Google Scholar
  194. 194.
    Baramova EN, Bajou K, Remacle A, L'Hoir C, Krell HW, Weidle UH, Noel A, Foidart JM: Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of proMMP-2 activation. FEBS Lett 405: 157-162, 1997Google Scholar
  195. 195.
    Mazzieri R, Masiero L, Zanetta I, Monea S, Onisto M, Garbisa S, Mignatti P: Control of type IV collagenase activity by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. EMBO J 16: 2319-2332, 1997Google Scholar
  196. 196.
    Bruno G, Todor R, Lewis I, Chyatte D: Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 89: 431-440, 1998Google Scholar
  197. 197.
    Lorenzl S, Albers DS, Narr S, Chirichigno J, Beal MF: Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counter-regulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson's disease. Exp Neurol 178: 13-20, 2002Google Scholar
  198. 198.
    Asahina M, Yoshiyama Y, Hattori T: Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer's disease brain. Clin Neuropathol 20: 60-63, 2001Google Scholar
  199. 199.
    Sekine-Aizawa Y, Hama E, Watanabe K, Tsubuki S, Kanai-Azuma M, Kanai Y, Arai H, Aizawa H, Iwata N, Saido TC: Matrix metalloproteinase (MMP) system in brain: Identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci 13: 935-948, 2001Google Scholar
  200. 200.
    Leake A, Morris CM, Whateley J: Brain matrix metalloproteinase 1 levels are elevated in Alzheimer's disease. Neurosci Lett 291: 201-203, 2000Google Scholar
  201. 201.
    Yoshiyama Y, Asahina M, Hattori T: Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer's disease brain. Acta Neuropathol (Berl) 99: 91-95, 2000Google Scholar
  202. 202.
    Soltrup-Jensen L, Sand O, Kristensen L, Fey GH: The α-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian α-macroglobulin. J Biol Chem 264: 15781-15789, 1989Google Scholar
  203. 203.
    Yo QZ, Hupe D, Johnson L: Catalytic domains of matrix metalloproteinases: A molecular biology approach to drug discovery. Curr Med Chem 3: 407-418, 1996Google Scholar
  204. 204.
    Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth FX, Nagase H, Tschesche H, Maskos K: Insights into MMP-TIMP interactions. Ann NY Acad Sci 878: 73-91, 1999Google Scholar
  205. 205.
    Golub LM, McNamara F, D'Angelo G, Greenwald A, Ramamurthy NS: Nonantibacterial chemically modified tetracycline inhibits mammalian collagenase activity. J Dent Res 66: 1310-1314, 1987Google Scholar
  206. 206.
    Beckett R: Whittaken M: Matrix metalloproteinase inhibitors. Exp Opin Ther Patents 8: 259-282, 1998Google Scholar
  207. 207.
    Moy FJ, Chanda PK, Chen J, Cosmi S, Edris W, Levin JI, Rush TS, Wilhelm J, Powers R: Impact of mobility on structure-based drug design for the MMPs. J Am Chem Soc 124: 12658-12659, 2002Google Scholar
  208. 208.
    Annabi B, Lachambre MP, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R: Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim Biophys Acta 1542: 209-220, 2002Google Scholar
  209. 209.
    Garbisa S, Sartor L, Biggin S, Salvato B, Benelli R, Albini A: Tumor gelatinases and invasion inhibited by the green tea flavonol epigallocatechin-3-gallate. Cancer 91: 822-832, 2001Google Scholar
  210. 210.
    Falardeau P, Champagne P, Poyet P, Hariton C, Dupont E: Neovastat, a naturally-occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol 28: 620-625, 2001Google Scholar
  211. 211.
    Cox MJ, Sood HS, Hunt MJ, Chandler D, Henegar JR, Aru GM, Tyagi SC: Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats. Am J Physiol Heart Circ Physiol 282: H1197-H1205, 2002Google Scholar
  212. 212.
    Amy SQX: Complex role of matrix metalloproteinases in angiogenesis. Cell Research 8: 171-177, 1998Google Scholar
  213. 213.
    Yoshizaki T, Sato H, Furukawa M: Recent advances in the regulation of matrix metalloproteinase 2 activation: From basic research to clinical implication (review). Oncol Rep 9: 607-611, 2002Google Scholar
  214. 214.
    McCarthy K, Maguire T, McGreal G, McDermott E, O'Higgins N, Duffy MJ: High levels of tissue inhibitors of metalloproteinase-1 predict poor outcome of patients with breast cancer. Int J Cancer 84: 44-48, 1999Google Scholar
  215. 215.
    Kurahara S, Shinohara M, Ikebe T, Nakamura S, Beppu M, Hiraki A, Takeuchi H, Shirasuna K: Expression of MMPs, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: Correlations with tumor invasion and metastasis. Head Neck 21: 627-638, 1999Google Scholar
  216. 216.
    Visscher DW, Hoyhtya M, Ottosen SK, Liang CM, Sarkar FH, Crissman JD, Fridman R: Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2), in the stroma of breast carcinoma correlates with tumor recurrence. Int J Cancer 59: 339-344, 1994Google Scholar
  217. 217.
    Zeng ZS, Cohen AM, Zhang ZF, Stetler-Stevenson W, Guillem JG: Elevated tissue inhibitor of metalloproteinase-1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res 1: 899-906, 1995Google Scholar
  218. 218.
    Bigg HF, Morrison CJ, Butler GS, Bogoyevitch MA, Wang Z, Soloway PD, Overall CM: Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res 61: 3610-3618, 2001Google Scholar
  219. 219.
    Toth M, Bernardo MM, Gervasi DC, Soloway PD, Wang Z, Bigg HF, Overall CM, DeClerck YA, Tschesche H, Cher ML, Brown S, Mobashery S, Fridman R: Tissue inhibitor of metalloproteinase (TIMP-2) acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (membrane type 1)-MMP-dependent activation of pro-MMP-2. J Biol Chem 275: 41415-41423, 2000Google Scholar
  220. 220.
    Duivenvoorden WC, Hirte HW, Singh G: Quantification of matrix metalloproteinase activity in plasma of patients enrolled in a BAY 12-9566 phase I study. Int J Cancer 91: 857-862, 2001Google Scholar
  221. 221.
    Nemunaitis J, Poole C, Primrose J, Rosemurgy A, Malfetano J, Brown P, Berrington A, Cornish A, Lynch K, Rasmussen H, Kerr D, Cox D, Millar A: Combined analysis of studies of the effects of matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: Selection of a biologically active and tolerable dose for longer term studies. Clin Cancer Res 4: 1101-1109, 1998Google Scholar
  222. 222.
    Wojtowicz-Praga S, Torri J, Johnson M, Steen V, Marshall J, Ness E, Dickson R, Sale M, Rasmussen HS, Chiodo TA, Hawkins MJ: Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J Clin Oncol 16: 2150-2156, 1998Google Scholar
  223. 223.
    Zucker S, Cao J, Chen WT: Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19: 6642-6650, 2000Google Scholar
  224. 224.
    Hidalgo M, Eckhardt SG: Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 93: 178-193, 2001Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Malay Mandal
    • 1
  • Amritlal Mandal
    • 1
  • Sudip Das
    • 1
  • Tapati Chakraborti
    • 1
  • Sajal Chakraborti
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of KalyaniKalyani West BengalIndia

Personalised recommendations