Numerical Algorithms

, Volume 33, Issue 1–4, pp 499–507 | Cite as

A Rational Approximant for the Digamma Function

  • Ernst Joachim Weniger

Abstract

Power series representations for special functions are computationally satisfactory only in the vicinity of the expansion point. Thus, it is an obvious idea to use Padé approximants or other rational functions constructed from sequence transformations instead. However, neither Padé approximants nor sequence transformation utilize the information which is avaliable in the case of a special function – all power series coefficients as well as the truncation errors are explicitly known – in an optimal way. Thus, alternative rational approximants, which can profit from additional information of that kind, would be desirable. It is shown that in this way a rational approximant for the digamma function can be constructed which possesses a transformation error given by an explicitly known series expansion.

digamma function power series rational approximants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1972).Google Scholar
  2. [2]
    G.A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd ed. (Cambridge Univ. Press, Cambridge, 1996).Google Scholar
  3. [3]
    C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods (North-Holland, Amsterdam, 1991).Google Scholar
  4. [4]
    H.H.H. Homeier, Scalar Levin-type sequence transformations, J. Comput. Appl.Math. 122 (2000) 81-147; reprinted in: Numerical Analysis 2000, Vol. 2: Interpolation and Extrapolation, ed. C. Brezinski (Elsevier, Amsterdam, 2000) pp. 81–147.Google Scholar
  5. [5]
    D. Levin, Development of non-linear transformations for improving convergence of sequences, Internat. J. Comput. Math. B 3 (1973) 371–388.Google Scholar
  6. [6]
    I.G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979).Google Scholar
  7. [7]
    W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966).Google Scholar
  8. [8]
    A.C. Matos, Construction de procédés d'extrapolation à partir de développements asymptotiques, Ph.D. thesis, Université des Sciences et Techniques de Lille Flandres-Artois (1989).Google Scholar
  9. [9]
    A.C. Matos, Acceleration methods based upon convergence tests, Numer. Math. 58 (1990) 329–340.Google Scholar
  10. [10]
    A. Sidi, Extension and completion of Wynn's theory on convergence of columns of the epsilon table, J. Approx. Theory 86 (1996) 21–40.Google Scholar
  11. [11]
    D.A. Smith and W.F. Ford, Acceleration of linear and logarithmic convergence, SIAMJ. Numer. Anal. 16 (1979) 223–240.Google Scholar
  12. [12]
    E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep. 10 (1989) 189–371.Google Scholar
  13. [13]
    E.J. Weniger, On the summation of some divergent hypergeometric series and related perturbation expansions, J. Comput. Appl. Math. 32 (1990) 291–300.Google Scholar
  14. [14]
    E.J. Weniger, Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations, Comput. Phys. 10 (1996) 496-503.Google Scholar
  15. [15]
    E.J. Weniger, Irregular input data in convergence acceleration and summation processes: General considerations and some special Gaussian hypergeometric series as model problems, Comput. Phys. Commun. 133 (2001) 202–228.Google Scholar
  16. [16]
    E.J. Weniger and J. Čížek, Rational approximations for the modified Bessel function of the second kind, Comput. Phys. Commun. 59 (1990) 471–493.Google Scholar
  17. [17]
    P. Wynn, On a device for computing the em(Sn) transformation, Math. Tables Aids Comput. 10 (1956) 91–96.Google Scholar
  18. [18]
    P. Wynn, On the convergence and the stability of the epsilon algorithm, SIAM J. Numer. Anal. 3 (1966) 91–122.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ernst Joachim Weniger
    • 1
  1. 1.Institut für Physikalische und Theoretische ChemieUniversität RegensburgRegensburgGermany

Personalised recommendations