Environmental Monitoring and Assessment

, Volume 88, Issue 1–3, pp 445–461 | Cite as

Opportunities for Improved Risk Assessments of Exotic Species in Canada Using Bioclimatic Modeling

  • Daniel W. McKENNEY
  • Anthony A. Hopkin
  • Kathy L. Campbell
  • Brendan G. Mackey
  • Robert Foottit
Article

Abstract

This paper briefly reviews the process of exotic pest risk assessments and presents some examples of emerging opportunities for spatial bioclimatic modeling of exotic species in Canada. This type of analysis can support risk assessments but does not replace the need for on-going high quality field-based observations to validate and update models. Bioclimatic analysis of several exotic pests is provided to illustrate both opportunities and limits. A link is demonstrated to the National Forest Inventory to characterize timber volumes at risk for one exotic species. ‘Challenges' are both scientific and administrative. More accessible and current field survey data are required to improve models. Our experience is that for many exotic species, historical, and even current, data are not always digital or quality controlled for taxonomic identity and accurate geo-referencing. This inhibits their use for integrated spatial modeling applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, C. R. B.: 1991, The validation and use of a life-cycle simulation model for risk assessment of insect pests, EPPO Bulletin 21, 615–622.Google Scholar
  2. Baker, R. H. A. and Dickens, J. S. W.: 1993, ‘Practical problems in pest risk assessment’. BCPC Monograph No. 54. Plant Health and the European Single Market. UK, British Crop Protection Council, BCPC Publications, Monograph 54, 209–220.Google Scholar
  3. Baker, R. H. A.: 1994, ‘The potential for geographical information systems in analysing the risks posed by exotic pests’. Brighton Crop Protection Conference – Pest and Diseases, British Crop Protection Council, BCPC Publications.Google Scholar
  4. Baker, R. H. A.: 1996, Developing a European pest risk mapping system, OEPP/EPPO Bulletin 26, 485–494.Google Scholar
  5. Beerling, D. J.: 1993, The impact of temperature on the northern distribution limits of the introduced species fallopia japonica and impatiens glandulifera in north-west Europe, J. Biogeogr. 20, 45–53.Google Scholar
  6. Boer, G. J., Flato, G. and Ramsden, D.: 2000, A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the 21st century, Climate Dynamics 16 (6), 427–450.Google Scholar
  7. Booth, T. H. and Javanoic, J.: 1988, Climatotology of Acicia mearnsii l. Characteristics of natural sites and exotic plantations, New Forests 2, 17–30.Google Scholar
  8. Busby, J. R.: 1991, BIOCLIM-A bioclimate analysis and prediction system. Chap. 10, in: Margules, C. R., Austin, M. P. (eds.) Nature Conservation: Cost Effective Biological Surveys and Data Analysis. CSIRO, Australia.Google Scholar
  9. Ciesla, W. M.: 1993, Recent introductions of forest insects and their effects: a global overview, FAO Plant Protection Bull. 41(1), 3–13.Google Scholar
  10. Coblentz, B. E.: 1990, Exotic organisms: A dilemma for conservation biology, Conserv. Biol. 4(3), 261–265.Google Scholar
  11. Cook, W. C.: 1929, A Bioclimatic zonation for studying the economic distribution of Injurious insects, Ecology 3, 282–293.Google Scholar
  12. Curnutt, J. L.: 2000, Host-area specific climatic-matching: Similarity breeds exotics, Biol. Conserv. 94, 341–351.Google Scholar
  13. Davis, A. J., Jenkinson, L. S., Lawton, J. H, Shorrocks, B. and Wood, S.: 1998, Making mistakes when predicting shifts in species range in response to global warming, Nature 391, 783–786.Google Scholar
  14. Elton. C. S.: 1958, The ecology of invasions by animals and plants, Methuen, London, 181 pp.Google Scholar
  15. EPPO (European and Mediterranean Plant Protection Organisation): 1993, Guidelines on Pest Risk Analysis, Bulletin 23, 191–198.Google Scholar
  16. Haack, R. A., Poland, T. M. and Heilman, W. E.: 1998, Using historical temperature records to adjust the federal quarantine of the pine shoot beetle, 13th Conference on Biometeorology. Aerobiology, 319–322.Google Scholar
  17. Harper, J. L.: 1977, Population biology of plants, Academic Press, New York.Google Scholar
  18. Hepting, G. H.: 1974, Death of the American Chestnut, J. For. History 18, 60–67.Google Scholar
  19. Hof, J.: 1998, Optimizing spatial and dynamic population-based control strategies for invading forest pests, Nat. Resource Modeling 11(4), 197–215.Google Scholar
  20. Houlder, D., Hutchinson, M., Nix, H. and McMahon, J.: 1999, ANUCLIM User's Guide. Centre for Resource and Environmental Studies, Australian National University.Google Scholar
  21. Hubbes, M.: 1999, The American elm and Dutch elm disease, Forest. Chronicle 75(2), 265–273.Google Scholar
  22. Hutchinson, M. D.: 1995, Interpolation of mean rainfall using thin plate smoothing splines, Int. J. Geogr. Inform. Syst. 9, 385–403.Google Scholar
  23. Hutchinson, M. D.: 1998, Interpolation of rainfall data with thin plate smoothing splines: II analysis of topographic dependence, J. Geogr. inform. decision anal. 2(2), 168–185.Google Scholar
  24. Jeffree, C. E. and Jeffree, E. P.: 1996, Redistribution of the potential geographical ranges of mistletoe and colorado beetle in Europe in response to the temperature component of climate change, British Ecol. Soc. 10, 562–577.Google Scholar
  25. Johnson, H. and Mayuex, H.: 1992, Viewpoint: A view on species additions and deletions and the balance of nature, J. Range Manag. 45(4), 322–333.Google Scholar
  26. Johnson, P. M. and Beaulieu, A.: 1996, The Environment and NAFTA: Understanding and Implementing the New Continental Law. Washington, D.C., Island Press.Google Scholar
  27. Lawton, J. H.: 1995, The Response of Insects to Environmental Change, in Harrington, R. and Stork, N.E. (eds) Insects in a Changing Environment, Academic Press, London, 3–26.Google Scholar
  28. Levin, S. A.: 1989, Analysis of risk for invasions and control programs. Biological invasions: a global perspective, in Drake, A., Mooney, H. A., di Castri, F., Groves, R. H., Kruger, F. J. and Williamson, M. (eds) Scope 37, Wiley, Chichester.Google Scholar
  29. Liebhold, A. M., Halverson, J. A. and Elmes, G. A.: 1992, Gypsy moth invasion in North America: a quantitative analysis, J. Biogeogr. 19, 513–520.Google Scholar
  30. Liebhold, A. M., MacDonald, W. L., Bergdahl, D. and Mastro, V. C.: 1995, Invasion by exotic forest pests: a threat to forest ecosystems, Forest Sci. Monogr. 30, 1–49.Google Scholar
  31. Lindenmayer, D. B., Mackey, B. G. and Nix, H. A.: 1996, The bioclimatic domains of four species of commercially important eucalypts from south-eastern Australia, Austral. Forest. 59(2), 74–89.Google Scholar
  32. Long, G. E.: 1977, Spatial dispersion in a biological control model for larch casebearer (Coleophora laricella), Environ. Entomol. 6(6), 843–852.Google Scholar
  33. Lovel, G. L.: 1997, Global change through invasion, Nature 388, 627–628.Google Scholar
  34. Mack, R. N.: 1996, Predicting the identity and fate of plant invaders: emergent and emerging approaches, Biol. Conserv. 78, 107–121.Google Scholar
  35. Mackey, B. G. and Sims, R. A.: 1991, A climatic analysis of selected boreal tree species, and potential responses to global climate change. World Resource Rev. 5(4), 469–487.Google Scholar
  36. Mackey, B. G., McKenney, D. W., Yang, Yin-Qian, McMahon, J. P. and Hutchinson, M. F.: 1996, Site regions revisited: a climatic analysis of Hills’ site regions for the Province of Ontario using a parametric method, Can. J. For. Res. 26, 333–354.Google Scholar
  37. McKenney, D. W., Mackey, B. G., Bogart, J. P., McKee, J. E. Oldham, M. J. and Chek, A.: 1998, Bioclimatic and spatial analysis of Ontario reptiles and amphibians, Ecoscience 5(1), 18–30.Google Scholar
  38. McKenney, D. W., Hutchinson, M. F., Kesteven, J. L. and Venier, L. A.: 2001, Canada's plant hardiness zones revisited using modern climate interpolation techniques. Can. J. Plant Sci. 81, 129–143.Google Scholar
  39. Mooney, H. A.: 1999, A global strategy for dealing with alien invasive species. Chapter 27, in Sandlund, O. T. et al. (ed) Invasive Species and Biodiversity Management, 407–418, Kluwer Academic Publishers, Netherlands.Google Scholar
  40. Mooney, H. A. and Drake, J. A. (eds): 1996, Ecology of biological invasions of North America and Hawaii, Springer-Verlag, New York.Google Scholar
  41. Niemela, P. M. and Mattson, W. J.: 1996, Invasion of North American forests by European phytophagous insects, BioScience 46(10), 741–753.Google Scholar
  42. Nix, H. A.: 1986, A biogeographic analysis of Australian elapid snakes, in Atlas of elapid snakes of Australia. Aust. Flora Fauna Ser. 7. Australian Government Printing Service, Canberra, ACT., pp. 4–15.Google Scholar
  43. Nix, H. A. and Wapshere, A. J.: 1986, Biogeographic origins of invading species, in: Groves, R. H. and Burdon, J. J. (eds) Ecology of Biological Invasions, Cambridge University Press, Cambridge.Google Scholar
  44. Ottens, H.: 1999, A suggested approach for the Canadian Forest Service to exotic forest pests. Canadian Forest Service Science Committee, Discussion paper. Ottawa, Ontario.Google Scholar
  45. Panetta, F. D. and Mitchell, N. D.: 1991, Homoclime analysis and the prediction of weediness, Weed Res. 31, 273–284.Google Scholar
  46. Parmesan, C.: 1996, Climate and species’ range, Nature 382, 765–766.Google Scholar
  47. Price, D., McKenney, D. W., Nalder, I., Hutchinson, M. F. and Kestevan, J.: 2000, A comparison of two statistical methods for interpolating monthly mean climate, Ag. Forest. Met. 101, 81–94.Google Scholar
  48. Régnière, J.: 1996, A generalized approach to landscape-wide seasonal forecasting with temperature driven simulation models, Environ. Entomol. 25, 869–881.Google Scholar
  49. Rejmanek, M.: 1996, A theory of seed plant invasiveness: the first sketch, Biol. Conserv. 78, 171–181.Google Scholar
  50. Sutherst, R. W.: 1991, Pest risk analysis and the greenhouse effect, Review Agric. Entomol. 79 (11/12), 1177–1187.Google Scholar
  51. Sutherst, R. W., Maywald, G. F. and Skarrat, D. B.: 1995, Predicting Insect Distributions in a Changed Climate, in Harrington, R. and Stork, N. E. (eds) Insects in a Changing Environment, Academic Press, London, 60–88.Google Scholar
  52. Vitousek, P. M., D'Antonio, C. M., Loope, L. L. and Westbrooks, R.: 1996, Biological Invasions as global environmental change, Am. Sci. 84, 468–478.Google Scholar
  53. Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. and Losos, E.: 1998, Quantifying threats to imperiled species in the United States, BioScience 48(8), 607–615.Google Scholar
  54. Williams, D. W., Liebhold, A. M.: 1995, Potential Changes in Spatial Distribution of Outbreaks of Forest Defoliators under Climate Change. Chapter 26, in Harrington, R. and Stork, N. E. (eds) Insects in a Changing Environment, Academic Press, London.Google Scholar
  55. Worner, S.: 1994, Predicting the Establishment of Exotic Pests in Relation to Climate, in Sharp, J. L. and Hallman, G. J. Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Co., pp. 11–32.Google Scholar
  56. Zalba, S. M., Sonaglioni, M. I., Compagnoni, C. A. and Belenguer, C. J.: 2000, Using a habitat model to assess the risk of invasion by an exotic plant, Biol. Conserv. 93, 203–208.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Daniel W. McKENNEY
    • 1
  • Anthony A. Hopkin
    • 1
  • Kathy L. Campbell
    • 1
  • Brendan G. Mackey
    • 2
  • Robert Foottit
    • 3
  1. 1.Canadian Forest ServiceSault Ste MarieCanada
  2. 2.he Australian National UniversityCanberraAustralia
  3. 3.Agriculture and Agri-Food CanadaOttawaCanada

Personalised recommendations