Hydrobiologia

, Volume 493, Issue 1–3, pp 187–200 | Cite as

Phosphatase activity in the sea

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammerman, J. W., 1991. Role of ecto–phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems. In Chróst, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer Verlag, Berlin: 165–186.Google Scholar
  2. Ammerman, J.W. & F. Azam, 1991. Bacterial 5?–nucleotidase activity in estuarine and coastal marine waters; characterization of enzyme activity. Limnol. Oceanogr. 36: 1427–1436.Google Scholar
  3. Ammerman, J. W. & W. B. Glover, 2000. Continuous underway measurement of microbial ectoenzyme activities in aquatic ecosystems. Mar. Ecol. Prog. Ser. 201: 1–12.Google Scholar
  4. Amy, P. S., B. A. Caldwell, A. H. Soeldner, R. Y. Morita & L. J. Albright, 1987. Microbial activity and ultrastructure of mineralbased marine snow from Howe Sound, British Columbia. Can. J. Fish. aquat. Sci. 44: 1135–1142.Google Scholar
  5. Argast, M. & W. Boos, 1980. Co–regulation in Escherichia coli of a novel transport system for sn–glycerol–3–phosphate and outer membrane protein Ic (e,E) with alkaline phosphatase and phosphate binding protein. J. Bact. 143: 142–150.Google Scholar
  6. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.–A. Meyer–Reil & F. Thingstad, 1983. The ecological role of water–column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  7. Bañeras, L., J. Rodriguez–Gonzales & L. J. Garcia–Gil, 1999. Contribution of photosynthetic sulfur bacteria to the alkaline phosphatase activity in anoxic aquatic ecosystems. Aquat. Microb. Ecol. 18: 15–22.Google Scholar
  8. Benitez–Nelson, C. R. & K. O. Buesseler, 1999. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 398: 502–505.Google Scholar
  9. Benitez–Nelson, C. R. & D. M. Karl, 2002. Phosphorus cycling in the North Pacific subtropical gyre using cosmogenic 32P and 33P. Limnol. Oceanogr. 47: 762–770.Google Scholar
  10. Boavida, M. J., 1990. Natural plankton phosphatases and the recycling of phosphorus. Verh. int. Ver. Limnol. 24: 258–259.Google Scholar
  11. Carlsson, P. & E. Graneli, 1993. Availability of humic bound nitrogen for coastal phytoplankton. Estuar. coast. shelf Sci. 36: 433–447.Google Scholar
  12. Cary, S. C., W. Warren, E. Anderson & S. J. Giovannoni, 1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont specific polymerase chain reaction amplification and in situ hybridization techniques. Mol. Mar. Biol. Biotechnol. 2: 51–62.Google Scholar
  13. Christian, J. R. & D. M. Karl, 1995. Measuring bacterial exoenzyme activities in marine waters using mercuric chloride as a preservative and a control. Mar. Ecol. Prog. Ser. 123: 217–224.Google Scholar
  14. Chróst, R. J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Chróst, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer Verlag, Berlin: 29–59.Google Scholar
  15. Chróst, R. J. & H. J. Krambeck, 1986. Fluorescence correction for measurements of enzyme activity in natural waters using methylumbelliferyl substrates. Arch. Hydrobiol. 106: 79–90.Google Scholar
  16. Chróst, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Plußsee (north German eutrophic lake). Microb. Ecol. 13: 229–248.Google Scholar
  17. Coolen, M. J. L. & J. Overmann, 2000. Functional exoenzymes as indicators of metabolically active bacteria in 124,000–year–old sapropel layers of the eastern Mediterranean Sea. Appl. Environ. Microbiol. 66: 2589–2598.Google Scholar
  18. Copin–Montegut, C. & G. Copin–Montegut, 1983. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep Sea Res. 30: 31–46.Google Scholar
  19. Cotner, J. B., J. W. Ammerman, E. R. Peele & E. Bentzen, 1997. Phosphorus–limited bacterioplankton growth in the Sargasso Sea. Aquat. Microb. Ecol. 13: 141–149.Google Scholar
  20. Davies, A. G. & M. A. Smith, 1988. Alkaline phosphatase activity in the western English Channel. J. mar. biol. Ass. U.K. 68: 239–260.Google Scholar
  21. De Souza, M. J., S. Nair, J. J. David & D. Chandramohan, 1996. Crude oil degradation by phosphate–solubilizing bacteria. J. mar. Biotechnol. 4: 91–95.Google Scholar
  22. Dyhrman, S. T. & B. P. Palenik, 1997. The identification and purification of a cell–surface alkaline phosphatase from the dino–flagellate Prorocentrum minimum (Dinophyceae). J. Phycol. 33: 602–612.Google Scholar
  23. Dyhrman, S. T. & B. Palenik, 2001. A single–cell immunoassay for phosphate stress in the dinoflagellate Prorocentrum minimum (Dinophyceae). J. Phycol. 37: 400–410.Google Scholar
  24. Espeland, E. M. & R. G. Wetzel, 2001. Complexation, stabilization, and UV photolysis of extracellular and surface–bound glucosidase and alkaline phosphatase: Implications for biofilm microbiota. Microb. Ecol. 42: 572–583.Google Scholar
  25. Gambin, F., G. Boge & D. Jamet, 1999. Alkaline phosphatase in a littoral Mediterranean marine ecosystem: role of the main plankton size classes. Mar. Environ. Res. 47: 441–456.Google Scholar
  26. Garde, K. & K. Gustavson, 1999. The impact of UV–B radiation on alkaline phosphatase activity in phosphorus–depleted marine ecosystems. J. exp. mar. Biol. Ecol. 238: 93–105.Google Scholar
  27. Gauthier M. J., G. N. Flatau & R. L Clément, 1990. Influence of phosphate ions and alkaline phosphatase activity of cells on survival of Escherichia coli in sea water. Microb. Ecol. 20: 245–251.Google Scholar
  28. Gonzalez–Gil, S., B. A. Keafer, R. V. M. Jovine, A. Aguilera, Songhui Lu & D. M. Anderson, 1998. Detection and quantification of alkaline phosphatase in single cells of phosphorus–starved marine phytoplankton. Mar. Ecol. Prog. Ser. 164: 21–35.Google Scholar
  29. Hauksson, J. B., O. S. Andresson & B. Asgeirsson, 2000. Heatlabile bacterial alkaline phosphatase from a marine Vibrio. Enzyme Microb. Technol. 27: 66–73.Google Scholar
  30. Heath, R. T. & A. C. Edinger, 1990. Uptake of 32P–phosphoryl from glucose–6–phosphate by plankton in an acid bog lake. Verh. int. Ver. Limnol. 24: 210–213.Google Scholar
  31. Helmke, E. & H. Weyland, 1995. Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117: 269–287.Google Scholar
  32. Hernández, I., J. R. Andria, M. Christmas & B. A. Whitton, 1999. Testing the allometric scaling of alkaline phosphatase activity to surface/volume ratio in benthic marine macrophytes. J. exp. mar. Biol. Ecol. 241: 1–14.Google Scholar
  33. Hoppe, H.–G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl–substrates. Mar. Ecol. Prog. Ser. 11: 299–308.Google Scholar
  34. Hoppe, H.–G., 1986. Relations between bacterial extracellular enzyme activity and heterotrophic substrate uptake in a brackish water environment. GERBAM–Deuxième Colloque de Bactériology marine–CNRS, IFREMER; Actes de Colloques 3: 119–128.Google Scholar
  35. Hoppe, H.–G., K. Gocke & F. Alcântara, 1996. Shifts between autotrophic and heterotrophic processes in a tidal lagoon (Ria de Aveiro, Portugal). Arch. Hydrobiol. Spec. Issues Adv. Limnol. 48: 39–52.Google Scholar
  36. Hoppe, H.–G. & S. Ullrich, 1999. Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone. Aquat. Microb. Ecol. 19: 129–138.Google Scholar
  37. Huang, Bangqin & Huasheng Hong, 1999. Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters. Mar. Pollut. Bull. 39: 205–211.Google Scholar
  38. Huang, Bangqin, Shiyu Huang, Yan Weng & Huasheng Hong, 1999. Effect of dissolved phosphorus on alkaline phosphatase activity in marine microalgae. Acta Oceanol. Sin./Haiyang Xuebao 21: 55–60.Google Scholar
  39. Huber, A. L. & K. S. Hamel, 1985. Phosphatase activities in relation to phosphorus nutrition in Nodularia spumigena (Cyanobacteriaceae). 2. Laboratory studies. Hydrobiologia 123: 81–88.Google Scholar
  40. Istvanovics, V., K. Pettersson & D. Pierson, 1990. Partitioning of phosphate uptake between different size groups of planktonic microorganisms in Lake Erken. Verh. int. Ver. Limnol. 24: 231–235.Google Scholar
  41. Ivanova, E. P., V. V. Mikhajlov, E. Yu. Plisova, L. A. Balabanova, V. I. Svetashev, M. V. Vysotskij, V. I. Stepanenko & V. A. Rasskazov, 1994. Characteristics of the strain of marine bacterium Deleya marina associated with the mussel Crenomytilus grayanus producing highly active alkaline phosphatase. Biol. Morya–Mar. Biol. 20: 340–345.Google Scholar
  42. Jochem, F. J., 2000. Probing the physiological state of phytoplankton at the single–cell level. Sci. Mar. (Barc.) 64: 183–195.Google Scholar
  43. Kim, S.–J. & H.–G. Hoppe, 1986. Microbial extracellular enzyme detection on agar–plates by means of fluorogenic 199 methylumbelliferyl–substrates. GERBAM–Deuxième Colloque de Bactériology marine–CNRS, IFREMER; Actes de Colloques 3: 175–183.Google Scholar
  44. Kobori, H. & N. Taga, 1979. Occurrence and distribution of phosphatase in neretic and oceanic sediments. Deep–Sea Res. 26: 799–808.Google Scholar
  45. Kobori, H., N. Taga & U. Simidu, 1979. Properties and generic composition of phosphatase–producing bacteria in coastal and oceanic seawater. Bull. Jap. Soc. Sci. Fish. 45: 1429–1433.Google Scholar
  46. Kobori, H., C. W. Sullivan & H. Shizuya, 1984. Heat–labile alkaline phosphatase from Antarctic bacteria: Rapid 5′ end–labelling of nucleic acids}. Proc. natl. Acad. Sci. U.S.A. 81: 6691–6695.Google Scholar
  47. Köster, M., S. Dahlke & L.–A. Meyer–Reil, 1997. Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the Southern Baltic Sea (Nordrügensche Bodden). Mar. Ecol. Prog. Ser. 152: 27–39.Google Scholar
  48. Koike, I. & T. Nagata, 1998. High potential activity of extracellular alkaline phosphatase in deep waters of the central Pacific. Deep–Sea Res. II, 44: 2283–2294.Google Scholar
  49. Krom, M. D., N. Kress & S. Brenner, 1991. Phosphorus limitation of primary production in the eastern Mediterranean Sea. Limnol. Oceanogr. 36: 424–432.Google Scholar
  50. Kwag, N.–T., J.–H. Son, J.–S. Lee & T.–Y. Ahn, 1995. Phosphatase activity in Cheonho reservoir. Korrean J. Microbiol. 33: 267–272.Google Scholar
  51. Labry, C., A. Herbland & D. Delmas, 2002. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay J. Plankton Res. 24: 97–117.Google Scholar
  52. Lan, W–.G., M.–K. Wong, N. Chen & Y.–M. Sin, 1995. Effect of combined copper, zinc, chromium and selenium by orthogonal array design on alkaline phosphatase activity in liver of the red sea beam, Chrysophrys major. Aquaculture 131: 219–230.Google Scholar
  53. Li Tie, Zhili Shi, Jun Li & Jinliang Zhang, 2000. Effects of nutrients on some biochemical constituents and properties of Skeletonema costatum and Nitzschia closterium. Oceanol. Limnol. Sin./Haiyang Yu Huzhao 31: 239–245.Google Scholar
  54. Li, H., M. J. W. Veldhuis & A. F. Post, 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar. Ecol. Prog. Ser. 173: 107–115Google Scholar
  55. Long, R. A., L. B. Fandino, G. F. Steward, P. Del Negro, P. Ramani, B. Cataletto, C. Welker, A. Puddu, S. Fonda & F. Azam, 1998. Microbial response to mucilage in the Gulf of Trieste. Eos (Suppl.), Transactions, American Geographical Union, Vol. 79, No. 1, poster abstract No. OS22A–5.Google Scholar
  56. Manafi, M.,W. Kneifel & S. Bascomb, 1991. Fluorogenic and chromatogenic substrates used in bacterial diagnostics. Microbiolog. Rev. 55: 335–348.Google Scholar
  57. Martinez, J. & F. Azam, 1993. Periplasmic aminopeptidase and alkaline phosphatase activities in a marine bacterium: implications for substrate processing in the sea. Mar. Ecol. Prog. Ser. 93: 89–97.Google Scholar
  58. Martinez, J., D. C. Smith, G. F. Steward & F. Azam, 1996. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10: 223–230.Google Scholar
  59. Middelboe, M., M. Søndergaard, Y. Letarte & N. H. Borch, 1995. Attached and free–living bacteria: production and polymer hydrolysis during a Diatom bloom. Microb. Ecol. 29: 21–248.Google Scholar
  60. Middelboe, M., N. O. G. Jørgensen & N. Kroer, 1996. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl. Environ. Microbiol. 62: 1991–1997.Google Scholar
  61. Myklestad, S. & E. Sakshaug, 1983. Alkaline phosphatase activity of Skeletonema costatum populations in the Trondheimsfjord. J. Plankton Res. 5: 557–564.Google Scholar
  62. Nagata, T. & D. L. Kirchman, 1992. Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar. Ecol. Prog. Ser. 83: 233–240.Google Scholar
  63. Nausch, M., 1997. Microbial activities on Trichodesmium colonies. Mar. Ecol. Prog. Ser. 141: 173–181.Google Scholar
  64. Nausch, M., 1998. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquat. Microb. Ecol. 16: 87–94.Google Scholar
  65. Nausch, M., F. Pollehne & E. Kerstan, 1998. Extracellular enzyme activities in relation to hydrodynamics in the Pomeranian Bight (Southern Baltic Sea). Micrb. Ecol. 36: 251–258.Google Scholar
  66. Nicolopoulou, A., K. Zoumbou, N. Papageorgacopoulou & M. Papapetropoulou, 1994. Metabolic and compositional changes in Escherichia coli cells starved in seawater. Microbiol. Res. 149: 343–350.Google Scholar
  67. Obst, U., 1995. Enzymatische Tests für die Wasseranalytik. R. Oldenbourg Verlag, München, Wien: 151 pp.Google Scholar
  68. Overbeck, J., 1991. Early studies on ecto–and extracellular enzymes in aquatic environments. In Chróst, R. J. (ed), Microbial enzymes in aquatic environments. Springer Verlag, Berlin: 1–5.Google Scholar
  69. Paasche, E. & S. R. Erga, 1988. Phosphorus and nitrogen limitation in the Oslofjord (Norway). Sarsia 73: 229–243.Google Scholar
  70. Paerl, H. W. & S. M. Merkel, 1982. Differential phosphorus assimilation in attached vs. unattached microorganisms. Arch. Hydrobiol. 93: 125–134.Google Scholar
  71. Pantoja, S. & C. Lee, 1994. Cell–surface oxidation of amino acids in seawater. Limnol.Oceanogr. 39: 1718–1726.Google Scholar
  72. Perry, M. J., 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar. Biol. 15: 113–119.Google Scholar
  73. Pettersson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus–deficiency indicators in Lake Erken. Arch. Hydrobiol. 89: 54–87.Google Scholar
  74. Priest, F. G., 1984. Extracellular enzymes. Aspects of microbiology 9. Van Nostrand Reinhold Co. Ltd, Wokingham, U.K.: 79 pp.Google Scholar
  75. Rivkin, R. B. & M. R. Anderson, 1997. Inorganic nutrient limitation of oceanic bacterioplankton. Limnol. Oceanogr. 42: 730–740.Google Scholar
  76. Rivkin, R. B. & E. Swift, 1980. Characterization of alkaline phosphatase and organic phosphorus utilization in the oceanic dinoflagellate Pyrocystis noctiluca. Mar. Biol. 61: 1–8.Google Scholar
  77. Sabil, N., A. Cherqui, D. Tagliapietra & M. A. Coletti–Previero, 1994. Immobilized enzymatic activity in the Venice Lagoon sediment. Water Res. 28: 77–84.Google Scholar
  78. Sakshaug, E., E. Graneli, M. Elbrächter & H. Kayser, 1984. Chemical composition and alkaline phosphatase activity of nutrientsaturated and P–deficient cells of four marine dinoflagellates. J. exp. mar. Biol. Ecol. 77: 241–254.Google Scholar
  79. Sala, M. M., M. Karner, L. Arin & C. Marrase, 2001. Measurement of ectoenzyme activities as an indication of inorganic nutrient imbalance in microbial communities. Aquat. Microb. Ecol. 23: 301–311.Google Scholar
  80. Saliot, A., G. Cauwet, G. Cahet, D. Mazaudier & R. Daumas, 1996. Microbial activities in the Lena River Delta and Laptev Sea. Mar. Chem. 53: 247–254.Google Scholar
  81. Santavy D. L.,W. L. J effry, R. A. Anyder, J. Campbell, P. Malouin & L. Cole, 1994. Microbial community dynamics in the mucus of healthy and stressed corals hosts. Bull. mar. Sci. 54: 1077–1087.Google Scholar
  82. Sawyer, T. K., T. S. Nerad, P. M. Daggett & S. M. Bodammer, 1987. Potentially pathogenic protozoa in sediments from oceanic sewage–disposal sites. In Capuzzo J. M. & D. R. Kester (eds), Oceanic Processes in Marine Pollution, Vol.1: Biological Processes and Wastes in the Ocean: 183–194.Google Scholar
  83. Scanlan, D. J. & W. H. Wilson, 1999. Application of molecular techniques to addressing the role of P as a key effector in marine ecosystems. Hydrobiologia 401: 149–175.Google Scholar
  84. Shi, L., W. W. Carmichael & P. J. Kennelly, 1999. Cyanobacterial ppp family protein phosphatases possess multifunctional capabilities and are resistant to microcystin–LR. J. Biol. Chem. 274: 10039–10046.Google Scholar
  85. Singh, S. A. M. & R. H. Green, 1986. Naturally occurring activity variation of an alkaline phosphatase isoenzyme associated with physiological fitness in an intertidal population of Macoma baltica. Can. J. Genet. Cytol. 28: 282–285.Google Scholar
  86. Siuda, W. & H. Güde, 1994. The role of phosphorus and organic carbon compounds in regulation of alkaline phosphatase activity and P regeneration processes in eutrophic lakes. Pol. Arch. Hydrobiol. 41: 171–187.Google Scholar
  87. Smith, D. C., M. Simon, A. L. Alldredge & F. Azam, 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359: 139–142.Google Scholar
  88. Sobecky, P. A., M. A. Schell, M. A. Moran & R. E. Hodson, 1996. Impact of a genetically engineered bacterium with enhanced alkaline phosphatase activity on marine phytoplankton communities. Appl. environ. Microbiol. 62: 6–12.Google Scholar
  89. Stihl, A., U. Sommer & A. F. Post, 2001. Alkaline phosphatase activities among populations of the colony–forming diazotrophic cyanobacterium Trichodesmium spp. (Cyanobacteria) in the Red Sea. J. Phycol. 37: 310–317.Google Scholar
  90. Suzumura, M. & A. Kamatani 1995. Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments: implications for the phosphorus cycle. Geochim. cosmochim. Acta 59: 1021–1026.Google Scholar
  91. Taga, N. & H. Kobori, 1978. Phosphatase activity in eutrophic Tokyo Bay. Mar. Biol. 49: 223–229.Google Scholar
  92. Tamburini, C., J. Garcin, M. Ragot & A. Bianchi, 2002. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000m water column in the NW Mediterranean. Deep–Sea Res. (II) 49: 2109–2123.Google Scholar
  93. Tezuka, Y., 1990. Bacterial regulation of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microb. Ecol. 19: 227–238.Google Scholar
  94. Thingstad, T. F. & F. Rassoulzadegan, 1995. Nutrient limitations, microbial food webs, and ‘biological pumps’: suggested interactions in a P–limited Mediterranean. Mar. Ecol. Prog. Ser. 117: 299–306.Google Scholar
  95. Tyrrell, T., 1999. The relative influence of nitrogen and phosphorus on oceanic primary production. Nature 400: 525–531.Google Scholar
  96. Uchida, T., 1992. Alkaline phosphatase and nitrate reductase activities in Prorocentrum micans Ehrenberg. Bull. Plankton Soc. Japan Nihon Purankuton Gakkaiho 38: 85–92.Google Scholar
  97. Van Wambeke, F., U. Christaki, A. Giannakourou, T. Moutin & K. Souvemerzoglou, 2002. Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microb. Ecol. 43: 119–133.Google Scholar
  98. Vargo, G. A. & E. Shanley, 1985. Alkaline phosphatase activity in the red–tide dinoflagellate, Ptychodiscus brevis P.S.Z.N.–I. Mar. Ecol. 6: 251–264.Google Scholar
  99. Venkateswaran, K. & R. Natarajan, 1983. Distribution of free phosphatase in sediments of Porto Novo. Indian J. mar. Sci. 12: 231–232.Google Scholar
  100. Waghmode, A. P., 1985. Study of phosphoglycerate in a marine algae Caulerpa racemosa var. peltata. In Krishnamurthy V. & A. G. Untawale (eds), Marine Plants. Papers Presented at the all India Symposium on Marine Plants, their Biology, Chemistry and Utilization, Dona Paula, Goa.: 93–98.Google Scholar
  101. Wright A. C., R. T. Hill, J. A. Johnson, M. C. Roghman, R. R. Colwell & J. G. Morris, Jr, 1996. Distribution of Vibio vulnificus in the Chesapeake Bay. Appl. Environ. Microbiol. 62: 717–724.Google Scholar
  102. Yentsch, C. M., C. S. Yentsch & J. P. Perras, 1972. Alkaline phosphatase activity in the tropical marine blue–green algae Oscillatoria erythrea (‘Trichodesmium’). Limnol. Oceanogr. 17: 772–774.Google Scholar
  103. Zappa, S., J. Rolland, D. Flament, Y. Gueguen, J. Boudrant & J. Dietrich, 2001. Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi. Appl. environ. Microbiol. 67: 4504–4511.Google Scholar
  104. Zohary, T. & R. D. Robarts, 1998. Experimental study of microbial P limitation in the eastern Mediterranean. Limnol. Oceanogr. 43: 387–395.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations