Applied Biochemistry and Microbiology

, Volume 39, Issue 5, pp 497–502 | Cite as

Properties of 2-C-Methyl-D-Erythritol 2,4-Cyclopyrophosphate, an Intermediate in Nonmevalonate Isoprenoid Biosynthesis

  • D. N. Ostrovsky
  • G. R. Dyomina
  • Yu. I. Deryabina
  • A. V. Goncharenko
  • M. Eberl
  • K. B. Shumaev
  • A. S. Shashkov


Extraction and purification from the biomass of Corynebacterium ammoniagenes of 2-C-methyl-D-erythritol 2,4-cyclopyrophosphate (MEC) was associated with its spontaneous transformation into a number of derivatives (which was due to the pyrophosphate bond lability and the formation of complexes with metals). These derivatives included 1,2-cyclophospho-4-phosphate, 2,4-diphosphate, 2,3-cyclophosphate, 1,4-diphosphate, and 3,5-diphosphate (identified by 1H, 31P, and 13C NMR spectroscopy) and accounted for about 10% of the MEC. When added to a solution of DNA in the presence of the Fenton reagent, MEC prevented DNA decomposition. In addition, MEC slowed down the interaction of the reagent with tempol radicals, which indicates that complexation of ferrous ions by MEC attenuates their ability to catalyze the formation of hydroxyl radicals from hydrogen peroxide. In the presence of 0.23 mM MEC, the rate of respiration of rat liver mitochondria increased by 1.8 times. At 0.1–1.0 mM, MEC activated in vitro proliferation of human Vgamma9 T cells. It is suggested that MEC acts as an endogenous stabilizing agent for bacterial cells subjected to oxidative stress and as an immunomodulator for eukaryotic hosts.


Respiration Pyrophosphate Fenton Liver Mitochondrion Isoprenoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ostrovskii, D.N., Uspekhi biol. khimii, 1997, vol. 37, pp. 147–169.Google Scholar
  2. 2.
    Potapov, V.D., Biketov, S.F., Demina, G.R., et al., Prikl. Biokhim. Mikrobiol., 2001, vol. 37, no.3, pp. 272–278.Google Scholar
  3. 3.
    Eberl, M., Altincicek, B., Kollas, A.K., et al., Immunology, 2002, vol. 106, no.2, pp. 200–212.Google Scholar
  4. 4.
    Feurle, J., Espinosa, E., Eckstein, S., et al., J. Biol. Chem., 2002, vol. 277, no.1, pp. 148–154.Google Scholar
  5. 5.
    Sicard, H., Al Saati, T., Delsol, G., and Fournie, J.-J., Mol. Med. (Tokyo), 2001, vol. 7, no.10, pp. 711–722.Google Scholar
  6. 6.
    Kollas, A.-K., Duin, E.C., Eberl, M., et al., FEBS Lett., 2002, vol. 532, no.3, pp. 432–436.Google Scholar
  7. 7.
    Hintz, M., Reichenberg, A., Altincicek, B., et al., FEBS Lett., 2001, vol. 509, no.2, pp. 317–322.Google Scholar
  8. 8.
    Jomaa, H., Wiesner, J., Sanderbrand, S., et al., Science, 1999, vol. 285, no.5433, pp. 1573–1575.Google Scholar
  9. 9.
    Kuzuyama, T., Biosci. Biotechnol. Biochem., 2002, vol. 66, no.8, pp. 1619–1627.Google Scholar
  10. 10.
    Okada, K., Kawaide, H., Kuzuyama, T., et al., Planta, 2002, vol. 215, no.2, pp. 339–344.Google Scholar
  11. 11.
    Giner, J.L. and Ferris, W., Organic Lett., 2002, vol. 4, no.7, pp. 1225–1226.Google Scholar
  12. 12.
    Lichtenthaler, H., Zeidler, J., and Muller, C., Z. Natur. ser. C, 2000, vol. 155, no.5/6, pp. 305–313.Google Scholar
  13. 13.
    Takagi, M., Kuzuyma, T., Kanada, K., et al., Tetrahedron Lett., 2000, vol. 41, no.18, pp. 3395–3398.Google Scholar
  14. 14.
    Hoeffler, J.F., Tritsch, D., Grosdemange-Billiard, C., and Rohmer, M., Eur. J. Biochem., 2002, vol. 269, no.18, pp. 4446–4457.Google Scholar
  15. 15.
    Herz, S., Wungsintaweekul, J., Schuhr, C., et al., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no.6, pp. 2486–2490.Google Scholar
  16. 16.
    Shchipanova, A.N., Kharat'yan, E.F., Sibel'dina, L.A., et al., Biokhimiya (Moscow), 1992, vol. 57, no.6, pp. 862–872.Google Scholar
  17. 17.
    Demina, G.R., Pleshakova, O.V., Sibel'dina, L.A., et al., Biokhimiya (Moscow), 1995, vol. 60, no.4, pp. 481–487.Google Scholar
  18. 18.
    Johnson, D. and Lardy H., Meth. Enzymol., 1967, vol. 10, pp. 94–96.Google Scholar
  19. 19.
    Shol'ts, K.F. and Ostrovskii, D.N., Labor. delo, 1965, no. 6, pp. 375–378.Google Scholar
  20. 20.
    Ostrovsky, D., Diomina, G., Shipanova, I., et al., Bio-Factors, 1993, vol. 4, no.3, pp. 154–159.Google Scholar
  21. 21.
    Duan, L., Gan, H., Golan, D., and Remold, H., J. Immunol., 2002, vol. 169, no.9, pp. 5181–5187.Google Scholar
  22. 22.
    Schoel, B. and Kaufmann, S., Microb. Pathol., 1998, vol. 24, no.3, pp. 197–201.Google Scholar
  23. 23.
    Pinegin, B.V., Otechestvennyi immunomodulyator “Polioksidonii”: mekhanizm deistviya i klinicheskoe primenenie (Native Immunomodulator Polyoxydoni: Mechanism of Action and Clinical Application), Moscow, 2000, pp. 6–8.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • D. N. Ostrovsky
    • 1
  • G. R. Dyomina
    • 1
  • Yu. I. Deryabina
    • 1
  • A. V. Goncharenko
    • 1
  • M. Eberl
    • 2
  • K. B. Shumaev
    • 1
  • A. S. Shashkov
    • 3
  1. 1.Russian Academy of SciencesBach Institute of BiochemistryMoscowRussia
  2. 2.Institute of BiochemistryUniversity of GiessenGermany
  3. 3.Russian Academy of SciencesZelinsky Institute of Organic ChemistryMoscowRussia

Personalised recommendations