Antonie van Leeuwenhoek

, Volume 84, Issue 2, pp 125–134 | Cite as

Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains

Abstract

The response of Saccharomyces cerevisiae and freeze-tolerant Torulaspora delbrueckii strains to osmotic stress and their CO2 production capacity in sweet and frozen-sweet dough has been examined. T. delbrueckii strains, IGC5321 and IGC5323 showed higher leavening ability than Saccharomyces, specially after exposure to hyperosmotic stress of bread dough containing 20% sucrose and 2% salt added. In addition, Torulaspora and especially T. delbrueckii IGC5321 exhibited no loss of CO2 production capacity during freeze-thaw stress. Overall, these results appeared to indicate that Torulaspora cells are more tolerant than Saccharomyces to osmotic stress of bread dough. This trait correlated with a low invertase activity, a slow rate of trehalose mobilisation and the ability to respond rapidly to osmotic stress. Growth behaviour on high osmotic synthetic media was also examined. Cells of the IGC5321 strain showed intrinsic osmotolerance and ion toxicity resistance. However,T. delbrueckii IGC5323 exhibited a clear phenotype of osmosensitivity. Hence, this characteristic may not be essential or the only determinant for leavening ability in salted high-sugar dough.

Baker's yeast Na+ resistance Osmotic stress Saccharomyces Sweet dough Torulaspora 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida M.J. and Pais C.S. 1996a. Characterization of the yeast population from traditional corn and rye bread doughs. Lett. Appl. Microbiol. 23: 154–158.CrossRefGoogle Scholar
  2. Almeida M.J. and Pais C.S. 1996b. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Appl. Environ. Microbiol. 62: 4401–4404.PubMedGoogle Scholar
  3. Ansell R., Granath K., Hohmann S., Thevelein J.M. and Adler L. 1997. The two isoenzymes for yeast NAD-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16: 2179–2187.PubMedCrossRefGoogle Scholar
  4. Attfield P.V. 1997. Stress tolerance: The key to effective strains of industrial baker's yeast. Nature Biotechnol. 15: 1351–1357.CrossRefGoogle Scholar
  5. Beudeker R.F., van Dam H.W., van der Plaat J.B. and Vellenga K. 1990. Developments in baker's yeast production. In: Verachtert H. and De Mot R. (eds), Yeast Biotechnology and Biocatalysis. Marcel Dekker, New York, pp. 103–146.Google Scholar
  6. Blomberg A. and Adler L. 1992. Physiology of osmotolerance in fungi. Adv. Microb. Phys. 33: 145–212.Google Scholar
  7. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.PubMedCrossRefGoogle Scholar
  8. Dichtl B., Stevens A. and Tollervey D. 1997. Lithium toxicity in yeast is due to inhibition of RNA processing enzymes. EMBO J. 16: 7184–7195.PubMedCrossRefGoogle Scholar
  9. Evans I.H. 1990. Yeast strains for baking: recent developments. In: Spencer J.F.T. and Spencer D.M. (eds), Yeast Technology. Springer-Verlag, Berlin, pp. 13–54.Google Scholar
  10. Gélinas P., Lagimonière M. and Dubord C. 1993. Baker's yeast sampling and frozen dough stability. Cereal Chem. 70: 219–225.Google Scholar
  11. Grout B., Morris J. and McLellan M. 1990. Cryopreservation and the maintenance of cell lines. Trends Biotechnol. 8: 293–297.PubMedCrossRefGoogle Scholar
  12. Gustafsson L. and Larsson C. 1990. Energy budgeting in studying the effect of environmental factors on the energy metabolism of yeasts. Thermochimica Acta 172: 95–104.CrossRefGoogle Scholar
  13. Hahn Y.-S. and Kawai H. 1990. Isolation and characterization of freeze-tolerant yeasts from nature available for the frozen-dough method. Agric. Biol. Chem. 54: 829–831.Google Scholar
  14. Hatano S., Udou M., Koga N., Honjoh K. and Miyamoto T. 1996. Impairment of the glycolytic system and actin in baker's yeast during frozen storage. Biosci. Biotechnol. Biochem. 60: 61–64.PubMedGoogle Scholar
  15. Hino A., Takano H. and Tanaka Y. 1987. New freeze-tolerant yeast for frozen dough preparations. Cereal Chem. 64: 269–275.Google Scholar
  16. Hino A., Mihara K., Nakashima K. and Takano H. 1990. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl. Environ. Microbiol. 56: 1386–1391.PubMedGoogle Scholar
  17. Hohmann S. 1997. Shaping up: the response of yeast to osmotic stress. In: Hohmann S. and Mager W.H. (eds), Yeast Stress Responses. Springer, New York, pp. 101–146.Google Scholar
  18. Hounsa C.-G., Brandt E.V., Thevelein J., Hohmann S. and Prior B.A. 1998. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144: 671–680.PubMedGoogle Scholar
  19. Meric L., Lambert-Guilois S., Neyreneuf O. and Richard-Molard D. 1995. Cryoresistance of baker's yeast Saccharomyces cerevisiae in frozen dough: contribution of cellular trehalase. Cereal Chem. 72: 609–615.Google Scholar
  20. Myers D.K. and Attfield P.V. 1999. Intracellular concentration of exogenous glycerol in Saccharomyces cerevisiae provides for improved leavening of frozen sweet doughs. Food Microbiol. 16: 45–51.CrossRefGoogle Scholar
  21. Myers D.K., Lawlor D.T.M. and Attfield P.V. 1997. Influence of invertase activity and glycerol synthesis and retention on fermentation of media with high sugar concentration by Saccharomyces Saccerevisiae. Appl. Environ. Microbiol. 63: 145–150.PubMedGoogle Scholar
  22. Neyreneuf O. and Van Der Plat J.B. 1991. Preparation of frozen French bread dough with improved stability. Cereal Chem. 68: 60–66.Google Scholar
  23. Niederacher D. and Entian K.-D. 1987. Isolation and characterization of the regulatory HEX2 gene necessary for glucose repression in yeast. Mol. Gen. Genet. 206: 505–509.PubMedCrossRefGoogle Scholar
  24. Oda Y. and Tonomura K. 1993. Selection of a novel baking strain from the Torulaspora yeasts. Biosci. Biotech. Biochem. 57: 1320–1322.Google Scholar
  25. Oliver S. 1991. Classical Yeast Technology. In: Tuite M.F. and Oliver S.G. (eds), Saccharomyces. Biotechnology handbooks Vol. 4. Plenum Press, London, pp. 213–248.Google Scholar
  26. Okada H. and Halvorson H.O. 1964. Uptake of alpha-thioethyl-glucopyranoside by Saccharomyces cerevisiae. 1. The genetic control of facilitated diffusion and active transport. Biochim. Biophys. Acta 82: 538–542.PubMedGoogle Scholar
  27. Randez-Gil F., Prieto J.A., Murcia A. and Sanz P. 1995. Construction of baker's yeast strains that secrete Aspergillus oryzae alpha-amylase and their use in bread making. J. Cereal Sci. 21: 185–193.CrossRefGoogle Scholar
  28. Randez-Gil F., Sanz P. and Prieto J.A. 1999. Engineering baker's yeast: room for improvement. Trends Biotechnol. 17: 237–244.PubMedCrossRefGoogle Scholar
  29. Sano F., Asakawa N., InoueY. and Sakurai M. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39: 80–87.PubMedCrossRefGoogle Scholar
  30. Sasaki T. and Oshima Y. 1987. Induction and characterization of artificial diploids from the haploid yeast Torulaspora delbrueckii. Appl. Environ. Microbiol. 53: 1504–1511.PubMedGoogle Scholar
  31. Shen B., Hohmann S., Jensen R.G. and Bohnert H.J. 1999. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 121: 45–52.PubMedCrossRefGoogle Scholar
  32. Serrano R. 1996. Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int. Rev. Cytol. 165: 1–52.PubMedCrossRefGoogle Scholar
  33. Serrano R., Márquez J.A. and Ríos G. 1997. Crucial factors in salt stress tolerance. In: Hohmann S. and Mager W.H. (eds), Yeast Stress Responses. Springer, New York, pp. 147–169.Google Scholar
  34. Shima J., Hino A., Yamada-Iyo C., Suzuki Y., Nakajima R., Watanabe H. et al. 1999. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker's yeast. Appl. Environ. Microbiol. 65: 2841–2846.PubMedGoogle Scholar
  35. Singer M.A. and Lindquist S. 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16: 460–468.PubMedCrossRefGoogle Scholar
  36. Sultan W.J. 1990. Sweet yeast dough products. In: Practical baking. 5th edn. Van Nostrand Reinhold, New York, pp. 217–327.Google Scholar
  37. Varela J.C.S. and Mager W.H. 1996. Response of Saccharomyces cerevisiae to changes in external osmolarity. Microbiology 142: 721–731.PubMedCrossRefGoogle Scholar
  38. Van Dijck P., Colavizza D., Smet P. and Thevelein J.M. 1995. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 61: 109–115.PubMedGoogle Scholar
  39. Van Zyl P.J. and Prior B.A. 1990. Water relations of polyol accumulation by Zygosaccharomyces rouxii in continuous culture. Appl. Microbiol. Biotechnol. 33: 12–17.CrossRefGoogle Scholar
  40. Yokoigawa K., Murakami Y. and Kawai H. 1995. Trehalase activity and trehalose content in a freeze-tolerant yeast, Torulaspora delbrueckii, and its freeze-sensitive mutant. Biosci. Biotech. Biochem. 59: 2143–2145.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.J. Hernandez-Lopez
    • 1
  • J.A. Prieto
    • 1
  • F. Randez-Gil
    • 1
  1. 1.Department of BiotechnologyInstituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones CientíficasBurjassotSpain

Personalised recommendations