, Volume 495, Issue 1–3, pp 33–39 | Cite as

Sources of organic carbon in mangrove sediments: variability and possible ecological implications

  • S. Bouillon
  • F. Dahdouh-Guebas
  • A.V.V.S. Rao
  • N. Koedam
  • F. Dehairs


Mangrove sediments from three different mangrove ecosystems (Coringa Wildlife Sanctuary in the Godavari Delta, Andhra Pradesh, India, and Galle and Pambala, south-west Sri Lanka) were analysed for their organic carbon content, elemental ratios (C:N) and carbon stable isotope composition. Organic carbon content (0.6 – 31.7% dry weight), C/N ratios (7.0 – 27.3) and δ13C (between −29.4 and −20.6‰) showed a wide range of values. Lower stocks of organic carbon coincided with low C/N (atom) ratios and less negative δ13C values, indicating import of marine or estuarine particulate suspended matter. High organic carbon stocks coincided with high C/N ratios and δ13C values close, but not equal, to those of the mangrove vegetation. The variations observed in this study and published literature data could be adequately described by a simple two-end mixing model, whereby marine/estuarine suspended matter and mangrove litter were taken as end members. Thus, while in some mangrove ecosystems or vegetation zones, organic carbon stocks can be very high and are almost entirely of mangrove origin, there also appear to be cases in which deposited estuarine or marine suspended matter is the dominant source of organic carbon and nitrogen in mangrove sediments. This situation is remarkably similar to that observed in temperate salt marsh ecosystems where the importance of local vascular plant production to the sediment organic carbon pool is equally variable. The observed high variability in organic matter origin is thought to have a major impact on the overall carbon dynamics in intertidal mangrove ecosystems.

carbon ecosystem functioning India mangroves nitrogen sediments Sri Lanka stable isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alongi, D. M., 1994. Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Oecologia 98: 320-327.Google Scholar
  2. Boschker, H. T. S., J. F. C. de Brouwer & T. E. Cappenberg, 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol. Oceanogr. 44: 309-319.Google Scholar
  3. Boschker, H. T. S., A. Wielemaker, B. E. M. Schaub & M. Holmer, 2000. Limited coupling of macrophyte production and bacterial cycling in the sediments of Zostera spp. meadows. Mar. Ecol. Prog. Ser. 203: 181-189.Google Scholar
  4. Bouillon, S. & F. Dehairs, 2000. Estimating spatial and seasonal phytoplankton ? 13C variations in an estuarine mangrove ecosystem. Isot. Environ. Health Stud. 36: 273-284.Google Scholar
  5. Bouillon, S., P. Chandra Mohan, N. Sreenivas & F. Dehairs, 2000. Sources of suspended matter and selective feeding by zooplankton in an estuarine mangrove ecosystem, as traced by stable isotopes. Mar. Ecol. Prog. Ser. 208: 79-92.Google Scholar
  6. Bouillon, S., A. V. Raman, P. Dauby & F. Dehairs, 2002a. Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar. Coast. Shelf Sci. 54: 901-913.Google Scholar
  7. Bouillon, S., N. Koedam, A. V. Raman & F. Dehairs, 2002b. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia 130: 441-448Google Scholar
  8. Cifuentes, L. A., R. B. Coffin, L. Solorzano, W. Cardenas, J. Espinoza & R. R. Twilley, 1996. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuar. Coast. Shelf Sci. 43: 781-800.Google Scholar
  9. Dahdouh-Guebas, F., A. Verheyden, W. De Genst, S. Hettiarachchi & N. Koedam, 2000. Four decade vegetation dynamics in Sri Lankan mangroves as detected from sequential aerial photography: a case-study in Galle. Bull. Mar. Sci. 67: 741-759.Google Scholar
  10. Dahdouh-Guebas, F. (ed.) 2002. Remote Sensing and GIS in the Sustainable Management of Tropical Coastal Ecosystems. Environment, Development and Sustainability Special Issue, Kluwer Academic Publishers, Dordrecht, The Netherlands: 145 pp.Google Scholar
  11. Dahdouh-Guebas, F., J. G. Kairo, L. P. Jayatissa, S. Cannicci & N. Koedam, 2002. An ordination study to view vegetation structure dynamics in disturbed and undisturbed mangrove forests in Kenya and Sri Lanka. Plant Ecol. 161(1): 123-135.Google Scholar
  12. Dehairs, F., R. G. Rao, P. Chandra Mohan, A. V. Raman, S. Marguillier & L. Hellings, 2000. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami-Godavari Delta, Bay of Bengal (India). Hydrobiologia 431: 225-241.Google Scholar
  13. Dittmar, T. & R. J. Lara, 2001. Molecular evidence for lignin degradation in sulphate-reducing mangrove sediments (Amazonia, Brazil). Geochim. Cosmochim. Acta 65: 1417-1428.Google Scholar
  14. Ehleringer, J. R., N. Buchmann & L. B. Flanagan, 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl. 10: 412-422.Google Scholar
  15. Ellison, J. C., 1998. Impacts of sediment burial on mangroves. Mar. Poll. Bull. 37: 420-426.Google Scholar
  16. Fujimoto, K., A. Imaya, R. Tabuchi, S. Kuramoto, H. Utsugi & T. Murofushi, 1999. Belowground carbon storage of Micronesian mangrove forests. Ecol. Res. 14: 409-413.Google Scholar
  17. Furukawa, K., E. Wolanski & H. Mueller, 1997. Currents and sediment transport in mangrove forests. Estuar. Coast. Shelf Sci. 44: 301-310.Google Scholar
  18. Hemminga, M. A., F. J. Slim, J. Kazungu, G. M. Ganssen, J. Nieuwenhuize & N. M. Kruyt, 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar. Ecol. Prog. Ser. 106: 291-301.Google Scholar
  19. Jennerjahn, T. C. & V. Ittekkot, 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89: 23-30.Google Scholar
  20. Kazungu, J. M., 1996. Nitrogen-transformational processes in a tropical mangrove ecosystem (Gazi Bay, Kenya). PhD dissertation, Free University of Brussels.Google Scholar
  21. Lallier-Verges, E., B. P. Perrussel, J. R. Disnar & F. Baltzer, 1998. Relationships between environmental conditions and the diagenetic evolution of organic matter derived from higher plants in a modern mangrove swamp system (Guadeloupe, French West Indies). Org. Geochem. 29: 1663-1686.Google Scholar
  22. Lee, S. Y., 1995. Mangrove outwelling: a review. Hydrobiologia 295: 203-212.Google Scholar
  23. Lee, S. Y., 1999. Tropical mangrove ecology: physical and biotic factors influencing ecosystem structure and function. Austr. J. Ecol. 24: 355-366.Google Scholar
  24. Lee, S. Y., 1997. Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa. Mar. Ecol. Prog. Ser. 159: 275-284.Google Scholar
  25. Machiwa, J. F., 2000. ? 13C signatures of flora, macrofauna and sediment of a mangrove forest partly affected by sewage wastes. Tanz. J. Sci. 26: 15-28.Google Scholar
  26. Matsui, N., 1998. Estimated stocks of organic carbon in mangrove roots and sediments in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 199-204.Google Scholar
  27. McKee, K. L., I. C. Feller, M. Popp & W. Wanek, 2002. Mangrove isotopic (? 15N and ? 13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83: 1065-1075.Google Scholar
  28. Micheli, F., 1993. Feeding ecology of mangrove crabs in Norht Eastern Australia: mangrove litter consumption by Sesarma messa and Sesarma smithii. J. Exp. Mar. Biol. Ecol. 171: 165-186.Google Scholar
  29. Middelburg, J. J., J. Nieuwenhuize, F. J. Slim & B. Ohowa, 1996. Sediment biogeochemistry in an East African mangrove forest (Gazi Bay, Kenya). Biogeochemistry 34: 133-155.Google Scholar
  30. Middelburg, J. J., J. Nieuwenhuize, R. K. Lubberts & O. van de Plassche, 1997. Organic carbon isotope systematics of coastal marshes. Estuar. Coast. Shelf Sci. 45: 681-687.Google Scholar
  31. Middleton, B. A. & K. L. McKee, 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J. Ecol. 89: 818-828.Google Scholar
  32. Morell, J. M. & J. E. Corredor, 1993. Sediment nitrogen trapping in a mangrove lagoon. Estuar. Coast. Shelf Sci. 37: 203-212.Google Scholar
  33. Murthy, N. V. S. S., 1997. Hydrography. In Dehairs, F. (ed.), An Assessment of the Ecological Importance of Mangroves in the Kakinada Area, Andhra Pradesh, India. Final report of European Community INCO-DC contract CI1?CT930320, Part III: 16-25.Google Scholar
  34. Nieuwenhuize, J., Y. E. M. Maas & J. J. Middelburg, 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Mar. Chem. 45: 217-224.Google Scholar
  35. Russel-Hunter, W. D., 1970. Aquatic productivity: an introduction to some basic aspects of biological oceanography and limnology. Collier-MacMillan, London, U.K.: 306 pp.Google Scholar
  36. Tanaka, K., K. Sugahara, Y. Ohwaki & P. S. Choo, 1998. C, N, P composition of suspended matter in Matang mangrove estuary, Malaysia. Japan Agricultural Research Quarterly 32: 153-158.Google Scholar
  37. Twilley, R. R., R. H. Chen, & T. Hargis, 1992. Carbon sinks in mangrove forests and their implications to the carbon budget of tropical coastal ecosystems. Wat. Air Soil Poll. 64: 265-288.Google Scholar
  38. Wolanski, E., S. Spagnol & T. Ayukai, 1998. Field and model studies of the fate of particulate carbon in mangrove-fringed Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 205-221.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Bouillon
    • 1
  • F. Dahdouh-Guebas
    • 2
  • A.V.V.S. Rao
    • 3
  • N. Koedam
    • 2
  • F. Dehairs
    • 1
  1. 1.Laboratory of Analytical and Environmental Chemistry, Mangrove Management GroupVrije Universiteit BrusselBrusselsBelgium
  2. 2.Laboratory of General Botany and Nature Management, Mangrove Management GroupVrije Universiteit BrusselBrusselsBelgium
  3. 3.Department of Zoology, Marine Biology LaboratoryAndhra University, VisakhapatnamAndhra PradeshIndia

Personalised recommendations