Journal of Biomolecular NMR

, Volume 27, Issue 3, pp 193–203 | Cite as

1HC and 1HN total NOE correlations in a single 3D NMR experiment. 15N and 13C time-sharing in t1 and t2 dimensions for simultaneous data acquisition

  • Youlin Xia
  • Adelinda Yee
  • Cheryl H. Arrowsmith
  • Xiaolian Gao


Simultaneous data acquisition in time-sharing (TS) multi-dimensional NMR experiments has been shown an effective means to reduce experimental time, and thus to accelerate structure determination of proteins. This has been accomplished by spin evolution time-sharing of the X and Y heteronuclei, such as 15N and 13C, in one of the time dimensions. In this work, we report a new 3D TS experiment, which allows simultaneous 13C and 15N spin labeling coherence in both t1 and t2 dimensions to give four NOESY spectra in a single 3D experiment. These spectra represent total NOE correlations between 1HN and 1HC resonances. This strategy of double time-sharing (2TS) results in an overall four-fold reduction in experimental time compared with its conventional counterpart. This 3D 2TS CN-CN-H HSQC-NOESY-HSQC pulse sequence also demonstrates improvements in water suppression, 15N spectral resolution and sensitivity, which were developed based on 2D TS CN-H HSQC and 3D TS H-CN-H NOESY-HSQC experiments. Combining the 3D TS and the 3D 2TS NOESY experiments, NOE assignment ambiguities and errors are considerably reduced. These results will be useful for rapid protein structure determination to complement the effort of discerning the functions of diverse genomic proteins.

HSQC NOESY protein NMR proteomics simultaneous data acquisition time-sharing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (1998) Nat. Struct. Biol., 5, 1019-1020.Google Scholar
  2. Bax, A., Clore, G.M., Driscoll, P.C., Gronenborn, A.M., Ikura, M. and Kay, L.E. (1990) J. Magn. Reson., 87, 620-627.Google Scholar
  3. Boelens, R., Burgering, M., Fogh, R.H. and Kaptein, R. (1994) J. Biomol. NMR, 4, 201-213.Google Scholar
  4. Brenner, S.E. (2001) Nat. Rev. Genet., 2, 801-809.Google Scholar
  5. Brutscher, B., Boisbouvier, J., Kupce, E., Tisne, C., Dardel, F., Marion, D. and Simorre, J.P. (2001) J. Biomol. NMR, 19, 141-151.Google Scholar
  6. Cavanagh, J., Fairbrother, W.J., Palmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, New York, NY.Google Scholar
  7. Clore, G.M. and Gronenborn, A.M. (1991) Science, 252, 1390-1399.Google Scholar
  8. Clore, G.M., Gronenborn, A.M. and Bax, A. (1998) J. Magn. Reson., 133, 216-221.Google Scholar
  9. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277-293.Google Scholar
  10. Diercks T., Coles, M. and Kessler, H. (1999) J. Biomol. NMR, 15, 177-180.Google Scholar
  11. Duggan, B.M., Legge, G.B., Dyson, H.J. and Wright, P.E. (2001) J. Biomol. NMR, 19, 321-329.Google Scholar
  12. Emsley, L. and Bodenhausen, G. (1990) Chem. Phys. Lett., 165, 469-476.Google Scholar
  13. Farmer II, B.T. (1991) J. Magn. Reson., 93, 635-641.Google Scholar
  14. Farmer II, B.T. and Mueller, L. (1994) J. Biomol. NMR, 4, 673-687.Google Scholar
  15. Jerala, R. and Rule, G.S. (1995) J. Magn. Reson., B108, 294-298.Google Scholar
  16. Kay, L.E., Clore, G.M., Bax, A. and Gronenborn, A.M. (1990) Science, 249, 411-414.Google Scholar
  17. Kupce, E. and Freeman, R. (1995) J. Magn. Reson., A115, 273-276.Google Scholar
  18. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A. (1989a) J. Am. Chem. Soc., 111, 1515-1517.Google Scholar
  19. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989b) J. Magn. Reson., 85, 393-399.Google Scholar
  20. McCoy, M.A. and Mueller, L. (1992a) J. Am. Chem. Soc., 114, 2108-2112.Google Scholar
  21. McCoy, M.A. and Mueller, L. (1992b) J. Magn. Reson., 98, 674-679.Google Scholar
  22. Meissner, A. and Sørensen, O.W. (2000a) J. Magn. Reson., 142, 195-198.Google Scholar
  23. Meissner, A. and Sørensen, O.W. (2000b) J. Magn. Reson., 140, 499-503.Google Scholar
  24. Muhandiram, D.R., Farrow, N., Xu, G.Y., Smallcombe, S.H. and Kay, L.E. (1993) J. Magn. Reson., B102, 317-321.Google Scholar
  25. Nilges, M., Macias, M.J, ODonoghue, S.I. and Oschkinat H. (1997) J. Mol. Biol., 269, 408-422.Google Scholar
  26. Nocek, J.M., Huang, K. and Hoffman, B.M. (2000) Proc. Natl. Acad. Sci. USA, 97, 2538-2543.Google Scholar
  27. Pascal, S.M., Muhandiram, D.R., Yamazaki, T., Forman-Kay, J.D. and Kay, L.E. (1994) J. Magn. Reson., 103, 197-201.Google Scholar
  28. Pervushin, K., Braun, D., Fernandez, C. and Wüthrich, K. (2000) J. Biomol. NMR, 17, 195-202.Google Scholar
  29. Pervushin, K.V., Wider, G., Riek, R. and Wüthrich, K. (1999) Proc. Natl. Acad. Sci. USA, 96, 9607-9612.Google Scholar
  30. Šali, A. (1998) Nat. Struct. Biol., 5, 1029-1032.Google Scholar
  31. Sattler, M., Maurer, M., Schleucher, J. and Griesinger, C. (1995) J. Biomol. NMR, 5, 97-102.Google Scholar
  32. Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547-552.Google Scholar
  33. Tjandra, N. and Bax, A. (1997) Science, 278, 1111-1114.Google Scholar
  34. Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264-6272.Google Scholar
  35. Vis, H., Boelens, R., Mariani, M., Stroop, R., Vorgias, C.E., Wilson, K.S. and Kaptein, R. (1994) Biochemistry, 33, 14858-14870.Google Scholar
  36. Wagner, G. (1989) Meth. Enzymol., 176, 93.Google Scholar
  37. Xia, Y., Man D. and Zhu, G. (2001) J. Biomol. NMR, 19, 355-360.Google Scholar
  38. Xia, Y., Sze, K. and Zhu, G. (2000) J. Biomol. NMR, 18, 261-268.Google Scholar
  39. Zhang, O. and Forman-Kay, J.D. (1997) Biochemistry, 36, 3959-3970.Google Scholar
  40. Zhu, G., Xia, Y., Sze, K. and Yan, X. (1999) J. Biomol. NMR, 14, 377-381.Google Scholar
  41. Zuiderweg, E.R.P. and Fesik, S.W. (1989) Biochemistry, 28, 2387-2391.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Youlin Xia
    • 1
    • 2
  • Adelinda Yee
    • 2
    • 3
  • Cheryl H. Arrowsmith
    • 2
    • 3
  • Xiaolian Gao
    • 1
  1. 1.Department of ChemistryUniversity of HoustonHoustonU.S.A
  2. 2.Ontario Cancer Institute and Department of Medical BiophysicsThe University of TorontoTorontoCanada
  3. 3.Northeast Structural Genomics ConsortiumCanada

Personalised recommendations