Advertisement

Hydrobiologia

, Volume 495, Issue 1–3, pp 143–158 | Cite as

Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows

  • R. Fisher
  • M.J. Sheaves
Article

Abstract

The spatial variability in the community structure of infaunal free-living marine nematodes of pioneer seagrass (Halophilaand Halodule) meadows within a deltaic mangrove estuarine system and a bay mangrove system in tropical north-eastern Australia were examined. Nematode mean densities were intermediate ranging from 609 to 2744 inds./10 cm2. A total of 152 putative species from 94 genera and 22 families were found across the four sites. The communities exhibited a high degree of dominance by Terschellingia longicaudata, Catanema sp 1, Terschellingia sp 2 and Metalinhomoeus insularis.Non-metric multi-dimensional scaling (nMDS) revealed that intra-site variability was low. This was reinforced by 1-way MANOVA, showing no significant inter-station differences between the six most dominant species at each site. The main system difference was reflected by a greater percentage of the Desmodoridae combined with a reduction of the Linhomoeidae in the bay system. At a species level system differences were manifested by a stenohaline, brackish water nematode assemblage in the deltaic system (M. insularis, Terschellingoidessp 1, Pseudolellasp 1) and, by a stenohaline, marine nematode assemblage in the bay system (Catanema sp 1, Spirinia parasitifera, Actinonemasp 1). These communities represent `hotspots' of diversity within a wider, mangrove-influenced depauperate fauna. The high degree of dominance found in each community was countered by moderate diversity and this, combined with the high number and speciation of deposit-feeding species, suggests that nematodes were more abundant in the meadows due to the abundance of microbial food. Notwithstanding the different salinity/CaCO3 regimes, these communities exhibit both intra- and inter-site homogeneity with dominance by a conservative, deep-dwelling guild. The fact that this homogeneity exists suggests that these small-bladed seagrass species may play a greater role (sediment stability, fine particle settlement, organic detritus) in influencing the infaunal nematode community than was previously thought.

meiofauna nematodes tropical seagrass Terschellingia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alongi, D. M., 1986. Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia. Aust. J. mar. Freshwat. Res. 37: 609-619.Google Scholar
  2. Alongi, D. M., 1987a. Inter-estuary variation and intertidal zonation of free-living nematode communities in tropical mangrove systems. Mar. Ecol. Prog. Ser. 40: 103-114.Google Scholar
  3. Alongi, D. M., 1987b. Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries. Mar. Biol. 95: 447-458.Google Scholar
  4. Alongi, D. M., 1987c. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 71: 537-540.Google Scholar
  5. Alongi, D. M., & P. Christofferson, 1992. Benthic infauna and organism-sediment relations in a shallow, tropical coastal area: influence of outwelled mangrove detritus and physical disturbance. Mar. Ecol. Prog. Ser. 81: 229-245.Google Scholar
  6. Ansari, Z. A. & A. H. Parulekar, 1994. Meiobenthos in the sediments of seagrass meadows of Lakshadweep Atolls, Arabian Sea. Vie Milieu 44: 185-190.Google Scholar
  7. Aryuthaka, C., 1991. Meiofauna community in Khung Kraben Bay, Chanthaburi, East Thailand. Thai mar. Res. Fish. Bull. 2: 47-57.Google Scholar
  8. Bell, S. S., J. C. Kern & K. Walters, 1984a. Sampling for meiofaunal taxa in seagrass systems: lessons from studies of a subtropical Florida estuary, U.S.A. Ind. Ed. Ser. 12: 239-245.Google Scholar
  9. Bell, S. S., K. Walters & J. C. Kern, 1984b. Meiofauna from seagrass habitats: a review and prospectus for future research. Estuaries 7: 331-338.Google Scholar
  10. Boucher, G., 1997. Structure and biodiversity of nematode assemblages in the SW lagoon of New Caledonia. Coral Reefs 16: 177-186.Google Scholar
  11. Bouwman, L. A., 1983. A survey of nematodes from the Ems Estuary. Part 2. Species assemblages and associations. Zool. Jahrb. (Syst. Oekol. Geogr. Tiere). 110: 345-376.Google Scholar
  12. Coull, B. C., 1999. Role of meiofauna in estuarine soft-bottom habitats. Aust. J. Ecol. 24: 327-343.Google Scholar
  13. Coull, B. C. & J. B. J. Wells, 1983. Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64: 1599-1609.Google Scholar
  14. Danovaro, R., 1996. Detritus-bacteria-meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol. 137: 1-13.Google Scholar
  15. Decraemer, W. & A. Coomans, 1978. Scientific report on the Belgian Expedition to the Great Barrier Reef in 1967. Nematodes XII. Ecological notes on the nematode fauna in and around mangroves on Lizard Island. Aust. J. mar. Freshwat. Res. 29: 497-508.Google Scholar
  16. De Troch, M., S. Gurdebeke, F. Fiers & M. Vincx, 2001a. Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). J. Sea Res. 45: 45-61.Google Scholar
  17. De Troch, M., F. Fiers & M. Vincx, 2001b. Alpha and beta diversity of harpacticoid copepods in a tropical seagrass bed: the relation between diversity and species' range size distribution. Mar. Ecol. Prog. Ser. 215: 225-236.Google Scholar
  18. Edgar, G. J., 1999. Experimental analysis of structural versus trophic importance of seagrass beds. I. Effects on macrofaunal and meiofaunal invertebrates. Vie Milieu 49: 239-248.Google Scholar
  19. Erftemeijer, P. L. A. & P. M. J. Herman, 1994. Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in south Sulawesi (Indonesia). Mar. Ecol. Prog. Ser. 99: 45-59.Google Scholar
  20. Eskin, R. A. & B. C. Coull, 1987. Seasonal and three-year variability of meiobenthic nematode populations at two estuarine sites. Mar. Ecol. Prog. Ser. 41: 295-303.Google Scholar
  21. Fenchel, T., 1970. Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol. Ocean. 15: 14-20.Google Scholar
  22. Fonseca, M. S. & S. S. Bell, 1998. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, U.S.A. Mar. Ecol. Prog. Ser. 171: 109-121.Google Scholar
  23. Fonseca, M. S. & J. A. Calahan, 1992. A preliminary evaluation of wave attenuation by four species of seagrasses. Estuar. coast. mar. Sci. 35: 565-576.Google Scholar
  24. Gacia, E., T. C. Granata & C. M. Duarte, 1999. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 65: 255-268.Google Scholar
  25. Gross, M. G., 1971. Carbon Determination. In Carver, R. E. (ed.), Procedures in Sedimentary Petrology, Chapter 25. Wiley & Sons, New York: 573-596.Google Scholar
  26. Hall, M. O. & S. S. Bell, 1988. Response of small motile epifauna to complexity of epiphytic algae on seagrass blades. J. mar. Res. 46: 613-630.Google Scholar
  27. Heip, C., M. Vincx & G. Vranken, 1985. The Ecology of Marine Nematodes. Ocean. mar. biol. Ann. Rev. 23: 399-489.Google Scholar
  28. Hentschel, U., E. C. Berger, M. Bright, H. Felbeck & J. A. Ott, 1999. Metabolism of nitrogen and sulphur in ectosymbiotic bacteria of marine nematodes (Nematoda, Stilbonematinae). Mar. Ecol. Prog. Ser. 183: 149-158.Google Scholar
  29. Hicks, G. R. F., 1986. Distribution and behaviour of meiofaunal copepods inside and outside seagrass beds. Mar. Ecol. Prog. Ser. 31: 159-176.Google Scholar
  30. Hodda, M. & W. L. Nicholas, 1985. Meiofauna associated with mangroves in the Hunter River Estuary and Fullerton Cove, South-eastern Australia. Aust. J. mar. Freshwat. Res. 36: 41-50.Google Scholar
  31. Hodda, M. & W. L. Nicholas, 1986. Temporal changes in littoral meiofauna from the Hunter River Estuary. Aust. J.mar. Freshwat. Res. 37: 729-741.Google Scholar
  32. Hopper, B. E. & S. P. Meyers, 1967. Population studies on benthic nematodes within a subtropical seagrass community Mar. Biol. 1: 85-96.Google Scholar
  33. Kotta, J. & G. Boucher, 2001. Interregional variation of free-living nematode assemblages in tropical coral sands. Cah. Biol. Mar. 42: 315-326Google Scholar
  34. Lanyon, J. M. & H. Marsh, 1995. Temporal changes in the abundance of some tropical intertidal seagrasses in North Queensland. Aquat. Bot. 49: 217-237.Google Scholar
  35. Lewis, D. W. & D. McConchie, 1994. Practical Sedimentology - 2nd edition. Chapman & Hall. New York. 213 pp.Google Scholar
  36. Lewis, F. G., 1984. Distribution of macrobenthic crustaceans associated with Thalassia, Halodule and bare sand substrata. Mar. Ecol. Prog. Ser. 19: 101-113.Google Scholar
  37. Kotta, J. & G. Boucher, 2001. Interregional variation of free-living nematode assemblages in tropical coral sands. Cah. Biol. Mar. 42: 315-326.Google Scholar
  38. Moens, T. & M. Vincx, 1997. Observations on the feeding ecology of estuarine nematodes. J. mar. biol. Ass. U.K. 77: 211-227.Google Scholar
  39. Moore, H. B., 1972. Aspects of stress in the tropical marine environment. Adv. mar. Biol. 10: 217-269.Google Scholar
  40. Ndaro, S. G. M. & E. Olafsson, 1999. Soft-bottom fauna with emphasis on nematode assemblage structure in a tropical intertidal lagoon in Zanzibar, eastern Africa: I. Spatial variability. Hydrobiologia 405: 133-148.Google Scholar
  41. Nicholas, W. L., J. A. Elek, A. C. Stewart & T. G. Marples, 1991. The nematode fauna of a temperate Australian mangrove mudflat; its population density, diversity and distribution. Hydrobiologia 209: 13-27.Google Scholar
  42. Novak, R., 1982. Spatial and seasonal distribution of the meiofauna in the seagrass Posidonia oceanica. Neth. J. Sea Res. 16: 380-388.Google Scholar
  43. Orth, R. J., K. L. Heck, Jr. & J. Van Montfrans, 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey-characteristics on predator-prey relationships. Estuaries 7: 339-350.Google Scholar
  44. Ott, J. A., 1972. Determination of faunal boundaries in an intertidal sandflat. Int. Rev. ges. Hydrobiol. 57: 645-663.Google Scholar
  45. Paula, J., P. Fidalgo e Costa, A. Martins & D. Gove, 2001. Patterns of abundance of seagrasses and associated infaunal communities at Inhaca Island, Mozambique. Estuar. coast. mar. Sci. 53: 307-318.Google Scholar
  46. Platt, H. M. & R.M. Warwick, 1983. Free-living marine nematodes. Part I. British Enoplids. In Kermack, D. M. & R. S. K. Barnes (eds), Synopses of the British Fauna (New Series) 28. Cambridge University Press. Cambridge. 307 pp.Google Scholar
  47. Platt, H. M. & R.M. Warwick, 1988. Free-living marine nematodes. Part II. British Chromadorids. In Kermack, D. M. & R. S. K. Barnes (eds), Synopses of the British Fauna (New Series) 38. Cambridge University Press. Cambridge. 502 pp. 158Google Scholar
  48. Polz, M. F., H. Felbeck, R. Novak, M. Nebelsick & J. A. Ott, 1992. Chemoautotrophic, sulfur-oxidising symbiotic bacteria on marine nematodes: morphological and biochemical characterisation. Micro. Ecol. 24: 313-329.Google Scholar
  49. Riemann, F., 1988. Nematoda. In Higgins, R. P. & H. Thiel, (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press. Washington D.C., London: 293-301.Google Scholar
  50. Schiemer, F., R. Novak & J. Ott, 1990. Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms. Mar. Biol. 106: 129-137.Google Scholar
  51. Schneider, I. F. & K. H. Mann, 1991. Species specific relationships of invertebrates to vegetation in a seagrass bed. II. Experiments on the importance of macrophyte shape, epiphyte cover and predation. J. exp. mar. Biol. Ecol. 145: 119-139.Google Scholar
  52. Soetaert, K., M. Vincx, J. Wittoeck & M. Tulkens, 1995. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311: 185-206.Google Scholar
  53. Stapel, J., R. Manuntun & M. A. Hemminga, 1997. Biomass loss and nutrient redistribution in an Indonesian Thalassia hemprichii seagrass bed following seasonal low tide exposure during daylight. Mar. Ecol. Prog. Ser. 148: 251-262.Google Scholar
  54. Steyaert. M., P. M. J. Herman, T. Moens, J. Widdows & M. Vincx, 2001. Tidal migration of nematodes on an estuarine tidal flat (the Molenplaat, Schelde Estuary, SWNetherlands). Mar. Ecol. Prog. Ser. 224: 299-304.Google Scholar
  55. Tietjen, J. H., 1991. Ecology of free-living nematodes from the continental shelf of the Central Great Barrier Reef Province. Estuar. coast. mar. Sci. 32: 421-438.Google Scholar
  56. Tietjen, J. H., 1969. The ecology of shallow water meiofauna in two New England estuaries. Oecologia 2: 251-291.Google Scholar
  57. Tita, G., M. Vincx & G. Desrosiers, 1999. Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. J. mar. biol. Ass. U.K. 79: 1007-1015.Google Scholar
  58. Walker, D., W. Dennison & G. Edgar, 1999, Status of Australian seagrass research and knowledge. In Butler, A. & P. Jernakoff (eds), Seagrass in Australia: Strategic Review and Development of an R & D Plan. CSIRO Publishing, Australia: 1-18.Google Scholar
  59. Walters, K., 1991. Influences of abundance, behaviour, species composition, and ontogenetic stage on active emergence of meiobenthic copepods in subtropical habitats. Mar. Biol. 108: 207-215.Google Scholar
  60. Walters, K. & S. S. Bell, 1986. Diel patterns of active vertical migration in seagrass meiofauna. Mar. Ecol. Prog. Ser. 34: 95-103.Google Scholar
  61. Walters, K. & S. S. Bell, 1994. Significance of copepod emergence to benthic, pelagic, and phytal linkages in a subtidal seagrass bed.. Mar. Ecol. Prog. Ser. 108: 237-249.Google Scholar
  62. Warwick, R. M. & J. M. Gee, 1984. Community structure of estuarine meiobenthos. Mar. Ecol. Prog. Ser. 18: 97-111.Google Scholar
  63. Warwick, R. M. & R. Price, 1979. Ecological and metabolic studies on free-living nematodes from an estuarine mud-flat. Estuar. coast. mar. Sci. 9: 257-271.Google Scholar
  64. Warwick, R. M., H. M. Platt & P. J. Somerfield, 1998. Free-living marine nematodes. Part III. British Monhysterids. In Barnes, R. S. K. & J. H. Crothers (eds), Synopses of the British Fauna (New Series) 53. Field Studies Council. Shrewsbury. 296 pp.Google Scholar
  65. Wieser, W., 1960. Benthic studies in Buzzards Bay. II. The Meiofauna. Limnol. Ocean. 5: 121-137.Google Scholar
  66. Wieser, W., 1959. Free-living Marine Nematodes. IV. General Part. Chile Reports 34. Lunds Univ. Arsskr., N.F.Avd. 55: 1-109.Google Scholar
  67. Wieser, W., 1953. Die beziehung zwischen mundhohlengestalt, ernahrungsweise und vorkommen bei freilebenden marinen nematoden. Arkiv Zoologi. 4: 439-484.Google Scholar
  68. Wieser, W. & J. Kanwisher, 1960. Ecological and physiological studies on marine nematodes from a small salt marsh nearWoods Hole, Massachusetts. Limnol. Ocean. 6: 262-270.Google Scholar
  69. Worcester, S. E., 1995. Effects of eelgrass beds on advection and turbulent mixing in low current and low shoot density environments. Mar. Ecol. Prog. Ser. 126: 223-232.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Estuarine Biology and Ecology Group, School of Marine Biology and AquacultureJames Cook UniversityTownsvilleAustralia

Personalised recommendations