Journal of Scientific Computing

, Volume 19, Issue 1–3, pp 553–572 | Cite as

Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing

  • Luminita A. Vese
  • Stanley J. Osher
Article

Abstract

This paper is devoted to the modeling of real textured images by functional minimization and partial differential equations. Following the ideas of Yves Meyer in a total variation minimization framework of L. Rudin, S. Osher, and E. Fatemi, we decompose a given (possible textured) image f into a sum of two functions u+v, where uBV is a function of bounded variation (a cartoon or sketchy approximation of f), while v is a function representing the texture or noise. To model v we use the space of oscillating functions introduced by Yves Meyer, which is in some sense the dual of the BV space. The new algorithm is very simple, making use of differential equations and is easily solved in practice. Finally, we implement the method by finite differences, and we present various numerical results on real textured images, showing the obtained decomposition u+v, but we also show how the method can be used for texture discrimination and texture segmentation.

functional minimization partial differential equations oscillating functions functions of bounded variation finite differences texture modeling image analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, R., and Vogel, C. R. (1994). Analysis of bounded variation penalty methods of ill-posed problems. Inverse Problem 10, 1217-1229.Google Scholar
  2. 2.
    Alvarez, L., Guichard, F., Lions, P. L., and Morel, J.-M. (1993). Axioms and fundamental equations of image-processing. Archive for Rational Mechanics and Analysis 123, 199-257.Google Scholar
  3. 3.
    Andreu, F., Ballester, C., Caselles, V., and Mazon, J. M. (2000). Minimizing total variation flow. CRAS I-Mathématique 331(11), 867-872.Google Scholar
  4. 4.
    Andreu, F., Caselles, V., Diaz, J. I., and Mazon, J. M. (2002). Some qualitative properties for the total variation flow. J. Func. Anal. 188(2), 516-547.Google Scholar
  5. 5.
    Aubert, G., and Vese, L. (1997). A variational method in image recovery. SIAM J. Numer. Anal. 34(5), 1948-1979.Google Scholar
  6. 6.
    Ballester, C., and Gonzalez, M. (1998). Affine invariant texture segmentation and shape from texture by variational methods. J. Math. Imaging Vis. 9(2), 141-171.Google Scholar
  7. 7.
    Casadei, S., Mitter, S., and Perona, P. (1992). Boundary Detection in Piecewise Homogeneous Textured Images, Lecture Notes in Computer Science, Vol. 588, pp. 174-183.Google Scholar
  8. 8.
    Chan, T., and Vese, L. (1999). An active contour model without edges. In Scale-Space Theories in Computer Vision, Lecture Notes in Computer Science, Vol. 1682, pp. 141-151.Google Scholar
  9. 9.
    Chan, T. F., and Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing 10(2), 266-277.Google Scholar
  10. 10.
    Chambolle, A., and Lions, P. L. (1997). Image recovery via total variation minimization and related problems. Numer. Math. 76, 167-188.Google Scholar
  11. 11.
    Evans, L. C., and Gariepy, R. F. (1992). Measure Theory and Fine Properties of Functions, CRC Press, London.Google Scholar
  12. 12.
    Koepfler, G., Lopez, C., and Morel, J.-M. (1994). A multiscale algorithm for image segmentation by variational method. SIAM J. Numer. Anal. 31(1), 282-299.Google Scholar
  13. 13.
    Lee, T. S. (1995). A Bayesian framework for understanding texture segmentation in the primary visual-cortex. Vision Research 35(18), 2643-2657.Google Scholar
  14. 14.
    Lee, T. S., Mumford, D., and Yuille, A. (1992). Texture Segmentation by Minimizing Vector-Valued Energy Functionals—the Coupled-Membrane Model, Lecture Notes in Computer Science, Vol. 588, pp. 165-173.Google Scholar
  15. 15.
    Malgouyres, F. (2002). Mathematical analysis of a model which combines total variation and wavelet for image restoration, Journal of Information Processes 2(1), 1-10.Google Scholar
  16. 16.
    Malgouyres, F. (2001). Combining total variation and wavelet packet approaches for image deblurring. Proceedings, IEEE Workshop on Variational and Level Set Methods in Computer Vision, 57-64.Google Scholar
  17. 17.
    Meyer, Y. (2002). Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, Vol. 22, Amer. Math. Soc.Google Scholar
  18. 18.
    Mumford, D., and Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577-685.Google Scholar
  19. 19.
    Oru, F. (1998). Le rôle des oscillations dans quelques problèmes d'analyse non-linéaire, Thèse, CMLA, ENS-Cachan, June 9, 1998.Google Scholar
  20. 20.
    Perona, P., and Malik, J. (1990). Scale-space and edge-detection using anisotropic diffusion. IEEE on PAMI 12(7), 629-639.Google Scholar
  21. 21.
    Rudin, L., and Osher, S. (1994). Total Variation Based Image Restoration with Free Local Constraints, Proc. IEEE ICIP, Vol. I, Austin (Texas) USA, pp. 31-35.Google Scholar
  22. 22.
    Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268.Google Scholar
  23. 23.
    Sandberg, B., Chan, T., and Vese, L. (2002). A Level-Set and Gabor-Based Active Contour Algorithm for Segmenting Textured Images, UCLA CAM Report 02-39.Google Scholar
  24. 24.
    Sapiro, G. (1997). Color Snakes. Computer Vision and Image Understanding 68(2), 247-253.Google Scholar
  25. 25.
    Vese, L. (2001). A study in the BV space of a denoising-deblurring variational problem. Applied Mathematics and Optimization 44(2), 131-161.Google Scholar
  26. 26.
    Wells, W. M.,III, Grimson, W. E. L., Kikinis, R., and Jolesz, F. A. (1996). Adaptive Segmentation of MRI Data. IEEE Transactions on Medical Imaging, Vol. 15, No. 4.Google Scholar
  27. 27.
    Zhu, S. C., Wu, Y. N., and Mumford, D. (1998). Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. Intern. J. Comput. Vision 27(2), 107-126.Google Scholar
  28. 28.
    Zhu, S. C., Wu, Y. N., and Mumford, D. (1997). Minimax entropy principle and its application to texture modeling. Neural computation 9(8), 1627-1660.Google Scholar
  29. 29.
    Candés, E. J., and Guo, F. (2002). New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing 82, 1519-1543.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Luminita A. Vese
    • 1
  • Stanley J. Osher
    • 1
  1. 1.Department of MathematicsUniversity of California, Los AngelesLos Angeles

Personalised recommendations