Journal of Scientific Computing

, Volume 19, Issue 1–3, pp 323–346 | Cite as

Overapproximating Reachable Sets by Hamilton-Jacobi Projections

  • Ian M. Mitchell
  • Claire J. Tomlin
Article

Abstract

In earlier work, we showed that the set of states which can reach a target set of a continuous dynamic game is the zero sublevel set of the viscosity solution of a time dependent Hamilton-Jacobi-Isaacs (HJI) partial differential equation (PDE). We have developed a numerical tool—based on the level set methods of Osher and Sethian—for computing these sets, and we can accurately calculate them for a range of continuous and hybrid systems in which control inputs are pitted against disturbance inputs. The cost of our algorithm, like that of all convergent numerical schemes, increases exponentially with the dimension of the state space. In this paper, we devise and implement a method that projects the true reachable set of a high dimensional system into a collection of lower dimensional subspaces where computation is less expensive. We formulate a method to evolve the lower dimensional reachable sets such that they are each an overapproximation of the full reachable set, and thus their intersection will also be an overapproximation of the reachable set. The method uses a lower dimensional HJI PDE for each projection with a set of disturbance inputs augmented with the unmodeled dimensions of that projection's subspace. We illustrate our method on two examples in three dimensions using two dimensional projections, and we discuss issues related to the selection of appropriate projection subspaces.

reachability Hamilton-Jacobi equation projection verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomlin, C. J., Mitchell, I., and Ghosh, R. (2001). Safety verification of conflict resolution maneuvers. IEEE T. Intell. Transp. 2, 110-120.Google Scholar
  2. 2.
    Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE T. Comput. C 35, 677-691.Google Scholar
  3. 3.
    Mitchell, I., Bayen, A., and Tomlin, C. J. Computing reachable sets for continuous dynamic games using level set methods. Submitted January 2002 to IEEE T. Automat. Contr.Google Scholar
  4. 4.
    Mitchell, I., and Tomlin, C. (2002). Level set methods for computation in hybrid systems. In Krogh, B., and Lynch, N. (eds.), Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 310-323.Google Scholar
  5. 5.
    Mitchell, I., Bayen, A., and Tomlin, C. J. (2001). Validating a Hamilton-Jacobi approximation to hybrid system reachable sets. In Benedetto, M. D. D., and Sangiovanni-Vincentelli, A. (eds.), Hybrid Systems: Computation and Control, Vol. 2034, Lecture Notes in Computer Science, Springer-Verlag, pp. 418-432.Google Scholar
  6. 6.
    Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49.Google Scholar
  7. 7.
    Osher, S., and Shu, C.-W. (1991). High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907-922.Google Scholar
  8. 8.
    Osher, S., and Fedkiw, R. (2002). Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag.Google Scholar
  9. 9.
    Crandall, M. G., Evans, L. C., and Lions, P.-L. (1984). Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282(2), 487-502.Google Scholar
  10. 10.
    Evans, L. C., and Souganidis, P. E. (1984). Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations. Indiana Univ. Math. J. 33(5), 773-797.Google Scholar
  11. 11.
    Lygeros, J., Tomlin, C., and Sastry, S. (1999). Controllers for reachability specifications for hybrid systems. Automatica 35(3), 349-370.Google Scholar
  12. 12.
    Tomlin, C., Lygeros, J., and Sastry, S. (2000). A game theoretic approach to controller design for hybrid systems, P. IEEE 88, 949-970.Google Scholar
  13. 13.
    Bardi, M., and Capuzzo-Dolcetta, I. (1997). Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Boston, Birkhäuser.Google Scholar
  14. 14.
    Broucke, M., Benedetto, M. D. D., Gennaro, S. D., and Sangiovanni-Vincentelli, A. (2001). Optimal control using bisimulations: Implementation. In Benedetto, M. D. D., and Sangiovanni-Vincentelli, A. (eds.), Hybrid Systems: Computation and Control, Vol. 2034, Lecture Notes in Computer Science, Springer-Verlag, pp. 175-188.Google Scholar
  15. 15.
    Cardaliaguet, P., Quincampoix, M., and Saint-Pierre, P. (1999). Set-valued numerical analysis for optimal control and differential games. In Bardi, M., Raghavan, T. E. S., and Parthasarathy, T. (eds.), Stochastic and Differential Games: Theory and Numerical Methods, Vol. 4, pp. 177-247, Annals of International Society of Dynamic Games, Birkhäuser.Google Scholar
  16. 16.
    Asarin, E., Bournez, O., Dang, T., and Maler, O. (2000). Approximate reachability analysis of piecewise-linear dynamical systems. In Lynch, N., and Krogh, B. (eds.), Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 21-31.Google Scholar
  17. 17.
    Botchkarev, O., and Tripakis, S. (2000). Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In Krogh, B., and Lynch, N. (eds.), Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 73-88.Google Scholar
  18. 18.
    Bemporad, A., Torrisi, F. D., and Morari, M. (2000). Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In Krogh, B., and Lynch, N. (eds.), Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 45-59.Google Scholar
  19. 19.
    Chutinan, A., and Krogh, B. H. (2000). Approximating quotient transition systems for hybrid systems. In Proceedings of the American Control Conference, Chicago, IL, pp. 1689-1693.Google Scholar
  20. 20.
    Hassibi, A., Boyd, S., and How, J. P. (1999). A class of Lyapunov functionals for analyzing hybrid dynamical systems. In Proceedings of the American Control Conference, San Diego, CA, pp. 2455-2460.Google Scholar
  21. 21.
    Henzinger, T. A., Horowitz, B., Majumdar, R., and Wong-Toi, H. (2000). Beyond HyTech: Hybrid systems analysis using interval numerical methods. In Krogh, B., and Lynch, N. (eds.) Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 130-144.Google Scholar
  22. 22.
    Kurzhanski, A. B., and Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis. In Krogh, B., and Lynch, N. (eds.), Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 202-214.Google Scholar
  23. 23.
    Shakernia, O., Pappas, G. J., and Sastry, S. S. (2000). Decidable controller synthesis for classes of linear systems. In Krogh, B., and Lynch, N. (eds.), Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 407-420.Google Scholar
  24. 24.
    Shishido, N., and Tomlin, C. J. (2000). Ellipsoidal approximations of reachable sets for linear games. In Proceedings of the IEEE Conference on Decision and Control, Sydney, Australia.Google Scholar
  25. 25.
    Tiwari, A., and Khanna, G. (2002). Series of abstractions for hybrid automata. In Tomlin, C. J., and Greenstreet, M. R. (eds.), Hybrid Systems: Computation and Control, Vol. 2289, Lecture Notes in Computer Science, Springer-Verlag, pp. 465-478.Google Scholar
  26. 26.
    Vidal, R., Schaffert, S., Lygeros, J., and Sastry, S. S. (2000). Controlled invariance of discrete time systems. In Krogh, B., and Lynch, N. (eds.), Hybrid Systems: Computation and Control, Vol. 1790, Lecture Notes in Computer Science, Springer-Verlag, pp. 437-450.Google Scholar
  27. 27.
    Greenstreet, M., and Mitchell, I. (1998). Integrating projections. In Sastry, S., and Henzinger, T. (eds.), Hybrid Systems: Computation and Control, Vol. 1386, Lecture Notes in Computer Science, pp. 159-174, Springer-Verlag.Google Scholar
  28. 28.
    Greenstreet, M., and Mitchell, I. (1999). Reachability analysis using polygonal projections. In Vaandrager, F., and van Schuppen, J. (eds.), Hybrid Systems: Computation and Control, Vol. 1569, Lecture Notes in Computer Science, Springer-Verlag, pp. 103-116.Google Scholar
  29. 29.
    Govindaraju, S. G., Dill, D. L., Hu, A. J., and Horowitz, M. A. (1998). Approximate reachability with BDDs using overlapping projections. In 35th Design Automation Conference, San Francisco, CA, pp. 451-456.Google Scholar
  30. 30.
    Govindaraju, S. G., Dill, D. L., and Bergmann, J. P. (1999). Improved approximate reachability using auxiliary state variables. In 36th Design Automation Conference, New Orleans, LA, pp. 312-316.Google Scholar
  31. 31.
    Govindaraju, S. G., and Dill, D. L. (2000). Counterexample-guided choice of projections in approximate symbolic model checking. In International Conference on Computer Aided Design, San Jose, CA, pp. 115-119.Google Scholar
  32. 32.
    Burchard, P., Cheng, L.-T., Merriman, B., and Osher, S. (2001). Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170, 720-741.Google Scholar
  33. 33.
    Osher, S., Cheng, L.-T., Kang, M., Shim, H., and Tsai, Y.-H. (2001). Geometric optics in a phase space based level set and Eulerian framework. J. Comput. Phys. 179, 622-648.Google Scholar
  34. 34.
    Engquist, B., Runborg, O., and Tornberg, A.-K. (2002). High frequency wave propagation by the segment projection method. J. Comput. Phys. 178, 373-390.Google Scholar
  35. 35.
    Merz, A. W. (1972). The game of two identical cars. J. Optim. Theory Appl. 9(5), 324-343.Google Scholar
  36. 36.
    Mitchell, I. (2001). Games of two identical vehicles. Tech. Rep. SUDAAR 740, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA.Google Scholar
  37. 37.
    Jiang, G.-S., and Peng, D. (2000). Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126-2143.Google Scholar
  38. 38.
    Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods, New York, Cambridge University Press.Google Scholar
  39. 39.
    Crandall, M. G., and Lions, P.-L. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43(167), 1-19.Google Scholar
  40. 40.
    Friedrichs, K. O., and Lax, P. D. (1971). Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. U.S.A. 68, 1686-1688.Google Scholar
  41. 41.
    Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439-471.Google Scholar
  42. 42.
    Bortoletto, S. (1993). The Bellman equation for constrained deterministic optimal control problems. Differential Integral Equations 6(4), 905-924.Google Scholar
  43. 43.
    Adalsteinsson, D., and Sethian, J. A. (1999). The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2-22.Google Scholar
  44. 44.
    http://cherokee.stanford.edu/~mitchell.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Ian M. Mitchell
    • 1
  • Claire J. Tomlin
    • 2
  1. 1.Scientific Computing and Computational Mathematics ProgramStanford UniversityStanford
  2. 2.Department of Aeronautics and AstronauticsStanford UniversityStanford

Personalised recommendations