Glycoconjugate Journal

, Volume 19, Issue 4–5, pp 263–267 | Cite as

Role of perlecan in skeletal development and diseases

  • John Hassell
  • Yoshihiko Yamada
  • Eri Arikawa-Hirasawa


Perlecan, a large heparan sulfate proteoglycan (HSPG), is present in the basement membrane and other extracellular matrices. Its protein core is 400 kDa in size and consists of five distinct structural domains. A number of in vitro studies suggest multiple functions of perlecan in cell growth and differentiation and tissue organization. Recent studies with gene knockout mice and human diseases revealed critical in vivo roles of perlecan in cartilage development and neuromuscular junction activity. Published in 2003.

heparan sulfate proteoglycan cartilage development mutations chondrodysplasia myotonia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roden L, Koerner T, Olson C, Schwartz NB, Mechanisms of chain initiation in the biosynthesis of connective tissue polysaccharides, Fed Proc 44, 373–80 (1985).PubMedGoogle Scholar
  2. 2.
    Bourdon MA, Krusius T, Campbell S, Schwartz NB, Ruoslahti E, Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins, Proc Natl Acad Sci 84, 3194–8 (1987).PubMedGoogle Scholar
  3. 3.
    Kitagawa H, Shimakawa H, Sugahara K, The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltrasferase that transfers N-acetylgalactosamine and iHassell, Yamada and Arikawa-Hirasawa N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate, J Biol Chem 274, 13933–7 (1999).PubMedGoogle Scholar
  4. 4.
    Dolan M, Horchar T, Rigatti B, Hassell JR, Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis, J Biol Chem 272(7), 4316–22 (1997).PubMedGoogle Scholar
  5. 5.
    Zhang L, Esko JD, Amino acid determinants that drive heparan sulfate assembly in a proteoglycan, J Bio Chem 269, 19295–9 (1994).Google Scholar
  6. 6.
    Zhang L, David G, Esko JD, Repetitive Ser-Gly sequences enhance heparan sulfate assembly in proteoglycans, J Biol Chem 270, 27127–35 (1995).PubMedGoogle Scholar
  7. 7.
    McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F, The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate, Nat Genet 19, 158–61 (1998).PubMedGoogle Scholar
  8. 8.
    Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K, The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate, J Biol Chem 273, 26265–8 (1998).PubMedGoogle Scholar
  9. 9.
    Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M, Functions of cell surface heparan sulfate proteoglycans, Annu Rev Biochem 68, 729–77 (1999).PubMedGoogle Scholar
  10. 10.
    Dunlevy JR, Hassell JR, Heparan sulfate proteoglycans in basement membranes. In Proteoglycans: Structure, Biology and Molecular Interactions, edited by Iozzo RV (Marcel Dekker, Inc., New York), 2000.Google Scholar
  11. 11.
    Knudson CB, Knudson W, Cartilage proteoglycans, Semin Cell Dev Biol 12, 69–78 (2001).PubMedGoogle Scholar
  12. 12.
    Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR, Isolation of a heparan sulfate-containing proteoglycan from basement membrane, Proc Natl Acad Sci 77(8), 4494–8 (1980).PubMedGoogle Scholar
  13. 13.
    Ledbetter SR, Tyree B, Hassell JR, Horigan EA, Identification of the precursor protein to basement membrane heparan sulfate proteoglycans, J Biol Chem 260(13), 8106–13 (1985).PubMedGoogle Scholar
  14. 14.
    Ledbetter SR, Fisher LW, Hassell JR, Domain structure of the basement membrane heparan sulfate proteoglycan, Biochem 26(4), 988–95 (1987).Google Scholar
  15. 15.
    Noonan DM, Horigan E, Ledbetter S, Vogeli G, Sasaki M, Yamada Y, Hassell JR, Identification of cDNA clones encoding different domains of the basement membrane heparan sulfate proteoglycan, J Biol Chem 263(31), 16379–87 (1998).Google Scholar
  16. 16.
    Noonan DM, Fulle A, Valente P, Cai S, Horigan E, Sasaki M, Yamada Y, Hassell JR, The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule, J Biol Chem 266(34), 22939–47 (1991).PubMedGoogle Scholar
  17. 17.
    Paulsson M, Yurchenco PD, Ruben GC, Engel J, Timpl R, Structure of low density heparan sulfate proteoglycan isolated from a mouse tumor basement membrane, J Mol Biol 197, 297–313 (1987).PubMedGoogle Scholar
  18. 18.
    Yurchenco PD, Cheng YS, Ruben GC, Self-assembly of a high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers, J Biol Chem 262, 17668–76 (1987).PubMedGoogle Scholar
  19. 19.
    Laurie GW, Inoue S, Bing JT, Hassell JR, Visualization of the large heparan sulfate proteoglycan from basement membranes, Am J Anat 181, 320–6 (1988).PubMedGoogle Scholar
  20. 20.
    Murdoch AD, Dodge GR, Cohen I, Tuan RS, Iozzo RV, Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor, J Biol Chem 267(12), 8544–57 (1992).PubMedGoogle Scholar
  21. 21.
    Noonan DM, Hassell JR, Perlecan, the large low density proteoglycan of basement membranes: Structure and variant forms, Kidney International 43(1), 53–60 (1993).PubMedGoogle Scholar
  22. 22.
    Rogalski TM, Williams BD, Mullen GP, Moerman DG, Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan, Genes Dev 7, 1471–84 (1993).PubMedGoogle Scholar
  23. 23.
    Friedrich MV, Schneider M, Timpl R, Baumgartner S, Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression, Eur J Biochem 267, 3149–59 (2000).PubMedGoogle Scholar
  24. 24.
    Rogalski TM, Mullen GP, Bush JA, Gilchrist EJ, Moerman DG, UNC-52/perlecan isoform diversity and function in Caenorhabditis elegans, Biochem Soc Trans 29, 171–6 (2001).PubMedGoogle Scholar
  25. 25.
    Govindraj P, West L, Koob TJ, Neame P, Doege K, Hassell J, Isolation and identification of the major heparan sulfate proteoglycans in the developing bovine rib growth plate, J Bio Chem 277, 19461–9 (2002).Google Scholar
  26. 26.
    SundarRaj N, Fite D, Ledbetter S, Chakravarti S, Hassell JR, Perlecan is a component of cartilage matrix and promotes chondrocyte attachment, J Cell Sci 108(Pt 7), 2663–72 (1995).PubMedGoogle Scholar
  27. 27.
    Handler M, Yurchenco PD, Iozzo RV, Developmental expression of perlecan during murine embryogenesis, Dev Dyn 210(2), 130–45 (1997).PubMedGoogle Scholar
  28. 28.
    Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y, Perlecan is essential for cartilage and cephalic development, Nat Genet 23, 354–8 (1999).PubMedGoogle Scholar
  29. 29.
    Cohen IR, Grassel S, Murdoch AD, Iozzo RV, Structural characterization of the complete human perlecan gene and its promoter, Proc Natl Acad Sci USA 90, 10404–8.Google Scholar
  30. 30.
    Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, Hamida CB, Hammouda H, Cruaud C, White PS, Samson D, Urtizberea JA, Lehmann-Horn F, Weissenbach J, Hentati F, Fontaine B, Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia), Nat Genet 26, 480–3 (2000).PubMedGoogle Scholar
  31. 31.
    Arikawa-Hirasawa E, Le AH, Nishino I, Nonaka I, Ho NC, Francomano CA, Govindraj P, Hassell JR, Devaney JM, Spranger J, Stevenson RE, Iannaccone S, Dalakas MC, Yamada Y, Structural and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome, with myotonic myopathy and chondrodysplasia, Am J Hum Genet 70, 1368–75 (2002).PubMedGoogle Scholar
  32. 32.
    Iozzo RV, Pillarisetti J, Sharma B, Murdoch AD, Danielson KG, Uitto J, Mauviel A, Structural and functional characterization of the human perlecan gene promoter. Transcriptional activation by transforming growth factor-beta via a nuclear factor 1-binding element, J Biol Chem 272, 5219–28 (1997).PubMedGoogle Scholar
  33. 33.
    Iozzo RV, Cohen IR, Grassel S, Murdoch AD, The biology of perlecan: The multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices, Biochem J 302, 625–39 (1994).PubMedGoogle Scholar
  34. 34.
    Timpl R, Brown JC, Supramolecular assembly of basement membranes, Bioessays 18, 123–32 (1996).PubMedGoogle Scholar
  35. 35.
    Hopf M, Gohring W, Kohfeldt E, Yamada Y, Timpl R, Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen Perlecan mutations cause chondrodysplasia and myotonia 267 complex, fibronectin, fibulin-2 and heparin, Eur J Biochem 259, 917–25 (1999).PubMedGoogle Scholar
  36. 36.
    Brown JC, Sasaki T, Gohring W, Yamada Y, Timpl R, The C-terminal domain V of perlecan promotes beta1 integrinmediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans, Eur J Biochem 250, 39–46 (1997).PubMedGoogle Scholar
  37. 37.
    Talts JF, Andac Z, Gohring W, Brancaccio A, Timpl R, Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins, Embo J 18, 863–70 (1999).PubMedGoogle Scholar
  38. 38.
    Gohring W, Sasaki T, Heldin CH, Timpl R, Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope, Eur J Biochem 255, 60–6 (1998).PubMedGoogle Scholar
  39. 39.
    Mongiat M, Taylor K, Otto J, Aho S, Uitto J, Whitelock JM, Iozzo RV, The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7, J Biol Chem 275, 7095–100 (2000).PubMedGoogle Scholar
  40. 40.
    Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA, The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases, J Biol Chem 271, 10079–86 (1996).PubMedGoogle Scholar
  41. 41.
    Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A, Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis, Cell 79, 1005–13 (1994).PubMedGoogle Scholar
  42. 42.
    Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R, Perlecan maintains the integrity of cartilage and some basement membranes, J Cell Biol 147(5), 1109–22 (1999).PubMedGoogle Scholar
  43. 43.
    Aviezer A, Hecht D, Safran M, Eisinger M, David G, Yayon A, Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis, Cell 79, 1005–13 (1994).PubMedGoogle Scholar
  44. 44.
    Forsten KE, Courant NA, Nugent MA, Endothelial proteoglycans inhibit bFGF binding and mitogenesis, J Cell Physiol 172, 209–20 (1997).PubMedGoogle Scholar
  45. 45.
    Larrain J, Alvarez J, Hassell JR, Brandan E, Expression of perlecan, a proteoglycan that binds myogenic inhibitory basic fibroblast growth factor, is down regulated during skeletal muscle differentiation, Exp Cell Res 234, 405–12 (1997).PubMedGoogle Scholar
  46. 46.
    Mongiat M, Otto J, Oldershaw R, Ferrer F, Sato JD, Iozzo RV, Fibroblast growth factor-binding protein is a novel partner for perlecan protein core, J Biol Chem 276, 10263–71 (2001).PubMedGoogle Scholar
  47. 47.
    Knox S, Merry C, Stringer S, Melrose J, Whitelock J, Not all perlecans are equal: Interactions with fibroblast growth factor 2 (FGF-2) and FGF receptors, J Biol Chem 277, 14657–65 (2002).PubMedGoogle Scholar
  48. 48.
    Yamaguchi TP, Rossant J, Fibroblast growth factors in mammalian development, Curr Opin Genet Dev 5, 485–91 (1995).PubMedGoogle Scholar
  49. 49.
    Martin GR, The roles of FGFs in the early development of vertebrate limbs, Genes Dev 12, 1571–86 (1998).PubMedGoogle Scholar
  50. 50.
    Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn GW 2nd, Lightfoot P, German R, Howles PN, Kier A, O'Toole BA et al., Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice, Mol Biol Cell 6, 1861–73 (1995).PubMedGoogle Scholar
  51. 51.
    Garofalo S, Kliger-Spatz M, Cooke JL, Wolstin O, Lumstrum GP, Moshkovitz SM, Horton WA, Yayon A, Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice, J Bone Miner Res 14, 1909–15 (1999).PubMedGoogle Scholar
  52. 52.
    Liu Z, Xu J, Colvin JS, Ornitz DM, Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18, Genes Dev 16, 859–69 (2002).PubMedGoogle Scholar
  53. 53.
    Tavormina PL, Shiang R, Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS, Wilcox WR, Rimoin DL, Cohn DH, Wasmuth JJ, Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3, Nat Genet 9, 321–8 (1995).PubMedGoogle Scholar
  54. 54.
    St-Jacques B, Hammerschmidt M, McMahon AP, Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation, Genes Dev 13, 2617 (1999).Google Scholar
  55. 55.
    Ingham PW, Hedgehog signaling: A tale of two lipids, Science 294, 1879 (2001).PubMedGoogle Scholar
  56. 56.
    Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP, Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1, Cell 105, 599–612 (2001).PubMedGoogle Scholar
  57. 57.
    Olsen BR, Life without perlecan has its problem, J Cell Biol 147(5), 909–12 (1999).PubMedGoogle Scholar
  58. 58.
    Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P, Fibroblast growth factor receptor 3 is a negative regulator of bone growth, Cell 84(6), 911–21 (1996).PubMedGoogle Scholar
  59. 59.
    Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ, Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein, Science 273(5275), 613–22 (1996).PubMedGoogle Scholar
  60. 60.
    Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y, Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene, Nat Genet 27, 431–4 (2001).PubMedGoogle Scholar
  61. 61.
    Arikawa-Hirasawa E, Wilcox WR, Yamada Y, Dyssegmental dysplasia, Silverman-Handmaker type: Unexpected role of perlecan in cartilage development, Am J Med Genet 106, 254–7 (2001).PubMedGoogle Scholar
  62. 62.
    Bayne EK, Anderson MJ, Fambrough DM, Extracellular matrix organization in developing muscle: Correlation with acetylcholine receptor aggregates, J Cell Biol 99, 1486–501 (1984).PubMedGoogle Scholar
  63. 63.
    Sanes JR, Schachner M, Covault J, Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle, J Cell Biol 102, 420–31 (1986).PubMedGoogle Scholar
  64. 64.
    Peng HB, Xie H, Rossi SG, Rotundo RL, Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan, J Cell Biol 145, 911–21 (1999).PubMedGoogle Scholar
  65. 65.
    Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y, Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice, Nat Neurosci 5, 119–23 (2002).PubMedGoogle Scholar
  66. 66.
    Spranger J, Hall BD, Hane B, Srivastava A, Stevenson RE, Spectrum of Schwartz-Jampel syndrome includes micromelic chondrodysplasia, kyphomelic dysplasia, and Burton disease, Am J Med Genet 94, 287–95 (2000).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • John Hassell
    • 1
  • Yoshihiko Yamada
    • 2
  • Eri Arikawa-Hirasawa
    • 3
  1. 1.The Center for Research in Skeletal Development and Pediatric Orthopaedics, Shriners Hospitals for Children and the Department of Biochemistry and Molecular Biology, College of MedicineUniversity of South FloridaTampaUSA
  2. 2.The Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental and Craniofacial Research, NIHBethesdaUSA
  3. 3.Research Institute for Diseases of Old AgesJuntendo University Medical SchoolHongo, Tokyo

Personalised recommendations