Journal of Scientific Computing

, Volume 19, Issue 1–3, pp 573–594 | Cite as

An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface

  • Jian-Jun Xu
  • Hong-Kai Zhao
Article

Abstract

In this paper we study an Eulerian formulation for solving partial differential equations (PDE) on a moving interface. A level set function is used to represent and capture the moving interface. A dual function orthogonal to the level set function defined in a neighborhood of the interface is used to represent some associated quantity on the interface and evolves according to a PDE on the moving interface. In particular we use a convection diffusion equation for surfactant concentration on an interface passively convected in an incompressible flow as a model problem. We develop a stable and efficient semi-implicit scheme to remove the stiffness caused by surface diffusion.

moving interfaces level set method surface convection and diffusion surfactant semi-implicit method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adalsteinsson, D., and Sethian, J. A. (1995). A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269.Google Scholar
  2. 2.
    Adalsteinsson, D., and Sethian, J. A. (1999). The fast construction of extension velocities in the level set methods. J. Comput. Phys. 148, 2.Google Scholar
  3. 3.
    Adalsteinsson, D., and Sethian, J. A. Transport and Diffusion of Material Quantities on Propagating Interfaces via Level Set Methods, preprint.Google Scholar
  4. 4.
    Aris, R. (1962). Vectors, Tensors, and the Basic Equations of Fluid, Prentice–Hall, Englewood Cliffs, NJ.Google Scholar
  5. 5.
    Batchlor, G. K. (1967). An Introduction to Fluid Dynamics, Cambridge University Press.Google Scholar
  6. 6.
    Burchard, P., Cheng, L.-T., Merriman, B., and Osher, S. (2001). Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170(2), 720-741.Google Scholar
  7. 7.
    Ceniceros, H., and Hou, T. Y. (2001). An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172(2), 1-31.Google Scholar
  8. 8.
    Bertalmio, M., Cheng, L.-T., Osher, S., and Sapiro, G. (2001). Variational problems and partial differential equations on implicit surfaces: The framework and examples in image processing and pattern formation. J. Comput. Phys. 174, 759-780.Google Scholar
  9. 9.
    Chen, S., Merriman, B., Osher, S., and Smereka, P. (1997). A simple level set method for solving Stefan problems. J. Comput. Phys. 135, 8.Google Scholar
  10. 10.
    Herring, C. (1951). Surface diffusion as a motivation for sintering. In The Physics of Powder Metallurgy, McGraw–Hill, New York, NY.Google Scholar
  11. 11.
    Hunter, J. K., Li, Z., and Zhao, H. K. Reactive autophobic spreading of drops, to appear in J. Comput. Phys.Google Scholar
  12. 12.
    Hou, T. Y., Li, Z., Osher, S., and Zhao, H. (1997). A hybrid method for moving interface problems with applications to the Hele-Shaw flows. J. Comput. Phys. 134, 236.Google Scholar
  13. 13.
    James, A., Lowengrub, J., and Seigel, M. Distribution formulation of interfaces with surfactant, preprint.Google Scholar
  14. 14.
    Jiang, G.-S., and Shu, C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228.Google Scholar
  15. 15.
    Jiang, G.-S., and Peng, D. (2000). Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126.Google Scholar
  16. 16.
    Li, X., and Pozrikidis, C. (1997). Effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 441-454.Google Scholar
  17. 17.
    Li, Z.-L., Zhao, H.-K., and Gao, H.-J. (1999). A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 152, 281.Google Scholar
  18. 18.
    Mullins, W. W. (1995). Mass transport at interfaces in single component system. Metallurgical and Materials Trans. A 26, 1917-1925.Google Scholar
  19. 19.
    Nichols, F. A., and Mullins, W. W. (1965). Surface (interface) and volume-diffusion contributions to morphological changes driven by capillarity. Trans. Metall. Soc. AIME 233, 1840-1847.Google Scholar
  20. 20.
    Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12.Google Scholar
  21. 21.
    Osher, S., and Shu, C. W. (1991). High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907.Google Scholar
  22. 22.
    OsherS., and Fedkiw, R. P. (2001). Level set methods: An overview and some recent results. J. Comput. Phys. 169, 463.Google Scholar
  23. 23.
    Peng, D., Merriman, B., Osher, S., Zhao, H.-K., and Kang, M. (1999). A PDE-based fast local level set method. J. Comput. Phys. 155, 410.Google Scholar
  24. 24.
    Saad, Y. (1996). Iterative methods for sparse linear systems, PWS.Google Scholar
  25. 25.
    Scriven, L. E. (1960). Chem. Eng. Sci. 12, 98.Google Scholar
  26. 26.
    Sethian, J. A. (2001). Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169, 503.Google Scholar
  27. 27.
    Shu, C.-W. (1988). Total-variation-diminishing time discretization. SIAM J. Sci. Stat. Comput. 9, 1073.Google Scholar
  28. 28.
    Stone, H. A. (1989). A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2(1), 111.Google Scholar
  29. 29.
    Strikwerda, J. C. (1989). Finite Difference Schemes and Partial Differential Equations, Wadsworth and Brooks/Cole Advanced Books and Software, Pacific grove, California.Google Scholar
  30. 30.
    Sussman, M., Smereka, P., and Osher, S. (1994). A levelset approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146-159.Google Scholar
  31. 31.
    Waxman, A. M. (1984). Stud. Appl. Math. 70, 63.Google Scholar
  32. 32.
    Wong, H., Rumschitzki, D., and Maldarelli, C. (1996). On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8(11), 3203.Google Scholar
  33. 33.
    Zhao, H., Chan, T., Merriman, B., and Osher, S. (1996). A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Jian-Jun Xu
    • 1
  • Hong-Kai Zhao
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaIrvine

Personalised recommendations