Journal of Scientific Computing

, Volume 19, Issue 1–3, pp 439–456 | Cite as

Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion

  • Peter Smereka


In this paper we introduce semi-implicit methods for evolving interfaces by mean curvature flow and surface diffusion using level set methods.

curvature flow surface diffusion level set methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adalsteinsson, D., and Sethian, J. A. (1997). A unified level set approach to etching, deposition, and lithography III: Complex simulations and multiple effects. J. Comput. Phys. 138(1), 193-223.Google Scholar
  2. 2.
    Chen, S. (June 1996). Ph.D. Dissertation, Dept. of Mathematics, UCLA.Google Scholar
  3. 3.
    Chen, S., Merriman, B., Osher, S., Smereka, P. (1997). A simple level set method for solving Stefan problems. J. Comput. Phys. 135, 8-29.Google Scholar
  4. 4.
    Chopp, D. L., and Sethian, J. A. (1999). Motion by intrinsic Laplacian of curvature. Interfaces and Free Boundaries 1, 107.Google Scholar
  5. 5.
    Douglas, J., Jr., and Dupont, T. (1971). Alternating-direction galerkin methods on rectangles. In Hubbard, B. (ed.), Numerical Solution of Partial Differential Equations, Academic Press, New York.Google Scholar
  6. 6.
    Glasner, K. A diffuse interface approach to Hele-Shaw flow. Preprint 2002.Google Scholar
  7. 7.
    Khenner, M., Averbuch, A., Israeli, M., and Nathan, M. (2001). Numerical simulation of grain-boundary grooving by level set method. J. Comput. Phys. 170, 764-784.Google Scholar
  8. 8.
    Li, Z. L., Zhao, H., and Gao, H. J. (1999). A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys., 152, 281.Google Scholar
  9. 9.
    Mullins, W. W. (1957). Theory of thermal grooving. J. Appl. Phys. 28, 333.Google Scholar
  10. 10.
    Mullins, W. W. (1995). Mass transport at interfaces in single component systems. Metall. Mater. Trans. 26A, 1917Google Scholar
  11. 11.
    Merriman, B., Bence, J., and Osher, S. (1994). Motion of multiple junctions: A level set approach. J. Comput. Phys. 112, 334.Google Scholar
  12. 12.
    Osher, S. J., and Fedkiw, R. P. (2001). Level set methods: An overview and some recent results. J. Comput. Phys. 169, 463-502.Google Scholar
  13. 13.
    Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi Formulations. J. Comput. Phys. 79, 12.Google Scholar
  14. 14.
    Russo, G., and Smereka, P. (2000). A remark on computing distance functions. J. Comp. Phys. 163, 51-67.Google Scholar
  15. 15.
    Ruuth, S. J. (1998). Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144, 603-625.Google Scholar
  16. 16.
    Sethian, J. A. (1996). Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences, First Edn., Cambridge University Press.Google Scholar
  17. 17.
    Sethian, J. A., and Smereka, P. (2003). Level set methods for fluid interfaces. Ann. Rev. Fluid Mech.Google Scholar
  18. 18.
    Srolovitz, D. J., Mazor, A., and Bukiet, B. G. (1988). Analytical and numerical modeling of columnar evolution in thin films. J. Va. Soc. Technol. A 6, 2371.Google Scholar
  19. 19.
    Sussman, M., Smereka, P., and Osher, S. (1994). A level set approach for incompressible two-phase flow. J. Comp. Phys. 114, 146-159.Google Scholar
  20. 20.
    Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. Geometric Surface Processing via Normal Maps, tUCLA CAM Report 02-03.Google Scholar
  21. 21.
    Xu, J., and Zhao, H. An Eulerian Formulation for Solving Partial Differential Equations along a Moving Interface, UCLA CAM report 02-27.Google Scholar
  22. 22.
    Zhao, H. K., Chan, T., Merriman, B., Osher, S. J. (1996). A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179-95.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Peter Smereka
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn Arbor

Personalised recommendations