Journal of Scientific Computing

, Volume 19, Issue 1–3, pp 225–252

Formulations for Numerically Approximating Hyperbolic Systems Governing Sediment Transport

  • Justin Hudson
  • Peter K. Sweby


This paper investigates the accurate numerical solution of the equations governing bed-load sediment transport. Two approaches: a steady and an unsteady approach are discussed and five different formulations within these frameworks are derived. A flux-limited version of Roe's scheme is used with the different formulations on a channel test problem and the results compared.

morphodynamic modelling sediment transport Roe's scheme shallow water equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bermudez, A., and Vazquez, M. E. (1994). Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids 23, 1049-1071.Google Scholar
  2. 2.
    Burguete, J., and Garcia-Navarro, P. (2001). Efficient construction of high-resolution tvd conservative schemes for equations with source terms. Application to shallow water flows. Int. J. Numer Meth Fluids 37, 209-248.Google Scholar
  3. 3.
    Cunge, J. A., Holly, F. M., and Verway, A. (1980). Practical Aspects of Computational River Hydraulics, Pitman.Google Scholar
  4. 4.
    Damgaard, J. S. (1998). Numerical Schemes for Morphodynamic Simulations, HR Wallingford, Report IT 459.Google Scholar
  5. 5.
    De Vries, M. (1973). River-bed Variations—Aggradation and Degradation, I.H.A.R. International Seminar on Hydraulics of Alluvial Streams, New Dehli.Google Scholar
  6. 6.
    Embid, P., Goodman, J., and Majda, A. (1984). Multiple steady states for 1D transonic flow. SIAM J. Sci. Stat. Comput. 8, 21-41.Google Scholar
  7. 7.
    Glaister, P. (1987). Difference Schemes for the Shallow Water Equations, Numerical Analysis Report 9/97, University of Reading.Google Scholar
  8. 8.
    Grass, A. J. (1981). Sediment Transport by Waves and Currents, SERC London Cent. Mar. Technol, Report No: FL29.Google Scholar
  9. 9.
    Harten, A. (1983). High resolution schemes for conservation laws. J. Comput. Phys. 49.Google Scholar
  10. 10.
    Hubbard, M. E., and Garcia-Navarro, P. (2000). Flux difference splitting and the balancing of source terms and flux gradients. J. Comput. Phys. 165, 89-125.Google Scholar
  11. 11.
    Hudson, J. (2001). Numerical Techniques for Morphodynamic Modelling, Ph.D. thesis, University of Reading. A colour postscript version of this thesis can be obtained at Scholar
  12. 12.
    Hudson, J., and Sweby, P. K. (2000). Numerical Formulations for Approximating the Equations Governing Bed-Load Sediment Transport in Channels and Rivers, Numerical Analysis Report 2/2000, University of Reading. A colour postscript version of this report can be obtained at Scholar
  13. 13.
    Le Veque, R. J., and Yee, H. C. (1990). A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86, 187-210.Google Scholar
  14. 14.
    Le Veque, R. J. (1998). Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346-365.Google Scholar
  15. 15.
    Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357-372.Google Scholar
  16. 16.
    Roe, P. L. (1986). Upwind differencing schemes for hyperbolic conservation laws with source terms. In Carasso, C., Raviart, P. A., and Serre, D. (eds.), Proc. Nonlinear Hyperbolic Problems, Springer Lecture Notes in Mathematics, Vol. 1270, pp. 41-51.Google Scholar
  17. 17.
    Soulsby, R. L. (1997). Dynamics of Marine Sands, A Manual for Practical Applications, HR Wallingford, Report SR 466.Google Scholar
  18. 18.
    Spiegel, M. R., and Liu, J. (1999). Mathematical handbook of formulas and tables, 2nd edn., Schaum's Outline Series, McGraw–Hill, ISBN 0-07-038203-4.Google Scholar
  19. 19.
    Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Num. Anal. 21, 995.Google Scholar
  20. 20.
    Zanré, D. D. L., and Needham, D. J. (1994). On the hyberbolic nature of the equations of alluvial river hydraulics and the equivalence of stable and energy dissipating shocks. Geophys. Astrophys. Fluid Dynamics 76, 193-222.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Justin Hudson
    • 1
  • Peter K. Sweby
    • 1
  1. 1.Department of MathematicsUniversity of Reading, WhiteknightsReading, BerkshireUnited Kingdom

Personalised recommendations