Journal of Solution Chemistry

, Volume 32, Issue 6, pp 473–487

Solubility of Oxygen in Some 1-1, 2-1, 1-2, and 2-2 Electrolytes as a Function of Concentration at 25°C

  • Frank J. Millero
  • Fen Huang
  • Taylor B. Graham
Article

Abstract

The solubility of oxygen has been measured in a number of electrolytes [(LiCl, KCl, RbCl, CsCl, NaF, NaBr, NaI, NaNO3, KBr, KI, KNO3, CaCl2, SrCl2, BaCl2, Li2SO4, K2SO4, Mn(NO3)3)] as a function of concentration at 25°C. The solubilities, μmol (kg-H2O)−1, have been fitted to a function of the molality m (standard deviation σ < 3μmol-kg−1)
$$\ln \left( {\left[ {{\text{O}}_{\text{2}} } \right]^0 /\left[ {{\text{O}}_{\text{2}} } \right]} \right) = \ln \gamma \left( {{\text{O}}_2 } \right) = Am + Bm^2 $$
where A and B are adjustable parameters and the activity coefficient of oxygen γ)O2) = [O2]0/[O2]. The limiting salting coefficient, kS = (∂ln γ/∂ m)m=0 = A, was determined for all salts. The salting coefficients for the chlorides and sodium salts showed a near linear correlation with the crystal molar volume Vcryst = 2.52 r3. The salting coefficients determined from the Scaled Particle Theory were in reasonable agreement with the measured values. The activity coefficients of oxygen in the solutions have been interpreted using the Pitzer equation
$$\ln \gamma _{{\text{O}}_{\text{2}} } = 2\sum\limits_{\text{c}} {\lambda _{{\text{O}}_{\text{2}} {\text{c}}} m_{\text{c}} /m^{\text{0}} + 2\sum\limits_{\text{a}} {\lambda _{{\text{O}}_{\text{2}} {\text{a}}} m_{\text{a}} + } \sum\limits_{\text{c}} {\sum\limits_{\text{a}} {m_{\text{c}} m_{\text{a}} } } \zeta _{{\text{O}}_{\text{2}} {\text{ca}}} }$$
where \(\lambda _{{\text{O}}_{\text{2}} {\text{i}}} \) is a parameter that accounts for the interaction of O2 with cations (c) and anions (a) with molalities ma and mc, and \(\zeta _{{\text{O}}_{\text{2}} {\text{ca}}}\) accounts for interactions for O2 with the cation and anion pair (c-a). The \(\lambda _{{\text{O}}_{\text{2}} {\text{i}}}\) and \(\zeta _{{\text{O}}_{\text{2}} {\text{ca}}}\) coefficients determined for the most of the ions are in reasonable agreement with the tabulations of Clegg and Brimblecombe. The values of \(\lambda _{{\text{O}}_{\text{2}} {\text{i}}}\) for most of the ions are a linear function of the electrostriction molar volume (Velect = V0Vcryst).
Oxygen Solubility activity coefficient salts alkali and alkaline earth chlorides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Battino, IUPAC Solubility Data Series: Oxygen and Ozone, Vol. 7 (Pergamon Press, Oxford, 1981).Google Scholar
  2. 2.
    R. Battino, T. R. Rettitch, and T. Tominaga, J. Phys. Chem. Ref. Data 12, 163(1983).Google Scholar
  3. 3.
    S. L. Clegg and P. Brimblecombe, Geochim. Cosmochim. Acta 54, 3315(1990).Google Scholar
  4. 4.
    S. D. Cramer, Ind. Eng. Chem. Process Design Develop. 19, 300(1980).Google Scholar
  5. 5.
    J. E. Sherwood, F. Stagnitti, M. J. Kokkinn, and W. D. Williams, Limnol. Oceanogr. 36, 235(1991).Google Scholar
  6. 6.
    F. J. Millero, Marine Chem. 70, 5(2000).Google Scholar
  7. 7.
    F. J. Millero Physical Chemistry of Natural Waters Wiley (Interscience), New York, 2001).Google Scholar
  8. 8.
    F. J. Millero, F. Huang, and A. L. Laferriere, Geochim. Cosmochim. Acta 66, 2349(2002).Google Scholar
  9. 9.
    F. J. Millero, F. Huang, and A. L. Laferriere, Marine Chem. 78, 217(2002).Google Scholar
  10. 10.
    J. Setschenow, J. Phys. Chem. 4, 117(1899).Google Scholar
  11. 11.
    M. Randall, and C. F. Failey, Chem. Rev. 4, 211(1927).Google Scholar
  12. 12.
    F. A. Long and W. F. McDevit, Chem. Rev. 51, 119(1952).Google Scholar
  13. 13.
    R. A. Pierotti, J. Phys. Chem. 69, 281(1965).Google Scholar
  14. 14.
    R. A. Pierotti, Chem. Rev. 76, 717(1976).Google Scholar
  15. 15.
    W. L. Masterton and T. P. Lee, J. Phys. Chem. 74, 1776(1970).Google Scholar
  16. 16.
    W. L. Masterton, J. Solution Chem. 4, 523(1975).Google Scholar
  17. 17.
    E. M. Pawllkowski and J. M. Prausnitz, Ind. Eng. Chem. Fund. 22, 86(1983).Google Scholar
  18. 18.
    K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, K. S. Pitzer, ed., 2nd edn, Vol. I (CRC Press, Boca Raton, FL, 1991), p. 75.Google Scholar
  19. 19.
    C. E. Harvie, N. Møller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723(1984).Google Scholar
  20. 20.
    A. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 50, 2771(1986).Google Scholar
  21. 21.
    F. J. Millero and D. Pierrot, Aqua. Geochem. 4, 153(1998).Google Scholar
  22. 22.
    J. M. Simonson, R. N. Roy, J. Connole, L. N. Roy, and D. A. Johnson, J. Solution Chem. 17, 791(1987).Google Scholar
  23. 23.
    J. M. Simonson, R. N. Roy, D. Mrad, P. Lord, L. N. Roy, and D. A. Johnson, J. Solution Chem. 17, 435(1988).Google Scholar
  24. 24.
    F. J. Millero and A. Poisson, Deep-Sea Res. 28, 625(1981).Google Scholar
  25. 25.
    J. H. Carpenter, Limnol. Oceanogr. 10, 141(1965).Google Scholar
  26. 26.
    P. J. leB. Williams and N.W. Jenkinson, Limnol. Oceanogr. 27, 576(1982).Google Scholar
  27. 27.
    B. B. Benson and D. KrauseJr., Limnol. Oceanogr. 29, 620(1984).Google Scholar
  28. 28.
    H. E. Garcia and L. I. Gordon, Limnol. Oceanogr. 37, 1307(1992).Google Scholar
  29. 29.
    C. V. Krishnan and H. L. Friedman, J. Solution Chem. 3, 727(1974).Google Scholar
  30. 30.
    N. E. Khomutov and E. I. Kohhik, Russ. J. Phys. Chem. 48, 359(1974).Google Scholar
  31. 31.
    A. Yasunishi, J. Chem. Eng. Jpn. 10, 89(1977); Kagaku Kogaku Rombun. 4, 185 (1978).Google Scholar
  32. 32.
    R. Marcus, Chem. Rev. 88, 1480(1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Frank J. Millero
    • 1
  • Fen Huang
  • Taylor B. Graham
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiami

Personalised recommendations