Advertisement

Differential Equations

, Volume 39, Issue 2, pp 155–164 | Cite as

The Center-Focus Problem for a System with Homogeneous Nonlinearities in the Case of Zero Eigenvalues of the Linear Part

  • A. F. Andreev
  • A. P. Sadovskii
  • V. A. Tsikalyuk
Article

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Linear Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Andreev, A.F., Osobye tochki differentsial'nykh uravnenii(Singular Points of Differential Equations), Minsk, 1979.Google Scholar
  2. 2.
    Amel'kin, V.V., Lukashevich, N.A., and Sadovskii, A.P., Nelineinye kolebaniya v sistemakh vtorogo poryadka(Nonlinear Oscillations in Second-Order Systems), Minsk, 1982.Google Scholar
  3. 3.
    Andreev, A.F., Prikl. Mat. Mekh., 1953, vol. 17, no. 3, pp. 333-338.Google Scholar
  4. 4.
    Sadovskii, A.P., Differents. Uravn., 1968, vol. 4, no. 11, pp. 2002-2009.Google Scholar
  5. 5.
    Gunning, R. and Rossi, H., Analytic Functions of Several Complex Variables, Englewood-Cliffs, 1965. Translated under the title Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Moscow: Mir, 1969.Google Scholar
  6. 6.
    Lyapunov, A.M., Obshchaya zadacha ob ustoichivosti dvizheniya(General Problem of Motion Stability), Moscow, 1950.Google Scholar
  7. 7.
    Andronov, A.A., Leontovich, E.A., Gordon, I.I., and Maier, A.G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka (Qualitative Theory of Second-Order Dynamical Systems), Moscow, 1966.Google Scholar
  8. 8.
    Romanovskii, V.G., Vestn. LGU. Matematika, Mekhanika, Astronomiya, 1986, vol. 19, no. 4, pp. 82-7.Google Scholar
  9. 9.
    Bibikov, Yu.N., Kurs obyknovennykh differentsial'nykh uravnenii(Course of Ordinary Differential Equations), Moscow, 1991.Google Scholar
  10. 10.
    Bryuno, A.D., Lokal'nyi metod nelineinogo analiza differentsial'nykh uravnenii(A Local Method of Nonlinear Analysis of Differential Equations), Moscow, 1979. DIFFERENTIAL EQUATIONS Vol. 39 No. 2 2003Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • A. F. Andreev
    • 1
    • 2
    • 3
  • A. P. Sadovskii
    • 1
    • 2
    • 3
  • V. A. Tsikalyuk
    • 1
    • 2
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Belarus State UniversityMinskBelarus/aff>
  3. 3.Grodno State UniversityGrodnoBelarus

Personalised recommendations