Advertisement

Molecular Biology

, Volume 37, Issue 4, pp 571–584 | Cite as

Identification of Horizontal Gene Transfer from Phylogenetic Gene Trees

  • V. V. V'yugin
  • M. S. Gelfand
  • V. A. Lyubetsky
Article

Abstract

We suggest a new procedure to search for the genes with horizontal transfer events in their evolutionary history. The search is based on analysis of topology difference between the phylogenetic trees of gene (protein) groups and the corresponding phylogenetic species trees. Numeric values are introduced to measure the discrepancy between the trees. This approach was applied to analyze 40 prokaryotic genomes classified into 132 classes of orthologs. This resulted in a list of the candidate genes for which the hypothesis of horizontal transfer in evolution looks true.

horizontal gene transfer evolutionary event statistics of evolutionary event search phylogenetic species tree phylogenetic protein tree tree reconciliation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V'yugin, V.V., Gelfand, M.S., and Lyubetsky, V.A. 2002. Tree Reconciliation: Reconstruction of Species Phylogeny by Phylogenetic Gene Trees. Mol. Biol., 36, 650–658.Google Scholar
  2. 2.
    V'yugin, V.V. and Lyubetsky, V.A. 2001. On an algorithm to search for horizontal gene transfer events basing on phylogenetic protein trees. Informatsionnye Protsessy, 1, 167–177.Google Scholar
  3. 3.
    Logsdon J.M., Faguy D.M. 1999. Thermotoga heats up lateral gene transfer. Curr. Biol. 9, 747–751.Google Scholar
  4. 4.
    Bacterial Conjugation. 1993. Ed. Clewell D.B., New York: Plenum Press.Google Scholar
  5. 5.
    Bergh O., Borsheim K.Y., Bratbak G., Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature. 340, 467–468.Google Scholar
  6. 6.
    Boucher Y., Doolitle W.F. 2000. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol. 37, 703–716.Google Scholar
  7. 7.
    Lawrence J.G. 1997. Selfish operons and speciation by gene transfer. Trends Microb. 5, 355–359.Google Scholar
  8. 8.
    Lawrence J.G. 1999. Gene transfer, speciation, and the evolution of bacterial genomes. Curr. Opin. Microbiol. 2, 519–523.Google Scholar
  9. 9.
    Doolitle W.F. 1999. Lateral Genomics. Trends Cell. Biol. 9, 5–8.Google Scholar
  10. 10.
    Lawrence J.G., Ochman H. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA. 95, 9413–9417.Google Scholar
  11. 11.
    Nelson K.E., Clayton R.A., Gill S.R. et al. 1999. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thetmotoga maritima. Nature. 399, 323–329.Google Scholar
  12. 12.
    Yanai I., Wolf Y., Koonin E. 2002. Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol. 3, Research 0024.Google Scholar
  13. 13.
    Koonin E.V., Makarova K.S., Aravind L. 2001. Horizontal gene transfer in prokaryotes: quntification and classification. Annu. Review Microbiol. 55, 709–742.Google Scholar
  14. 14.
    Page R.D.M., Charlstone M.A. 1998. From gene to organismal phylogeny: reconciled trees and gene tree/ species tree problem. Mol. Phyl. Evol. 7, 231–240.Google Scholar
  15. 15.
    Page R.D.M. 1998. Genetree: comparing gene and species phylogenies using reconciled trees. Bioinform. Appl. Notes. 14, 819–820.Google Scholar
  16. 16.
    Wolf Y., Rogozin I., Grishin N., Tatusov R., Koonin E. 2001. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1, 8.Google Scholar
  17. 17.
    Makarova K.S., Ponomarev V.A., Koonin E.V. 2001. Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol. 2(9), Research 0033.Google Scholar
  18. 18.
    Lyubetsky V.A., V'yugin V.V. 2002. Method of horizontal gene transfer determination using phylogenetic data. Proc. Third Internat. Conf. Bioinform. Genome Regulat. Struct. 2, IC&G. Novosibirsk, 60–62.Google Scholar
  19. 19.
    Mirkin B.G., Fenner T.I., Galperin M.Y., Koonin E.V. 2003. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of eukaryotes. BMC Evol. Biol. 3, 2.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • V. V. V'yugin
    • 1
  • M. S. Gelfand
    • 2
  • V. A. Lyubetsky
    • 1
  1. 1.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.State Research Center GosNIIGenetikaMoscowRussia

Personalised recommendations