, Volume 10, Issue 3, pp 189–199 | Cite as

Crystal Structure Refinements of Cellulose Polymorphs using Solid State 13C Chemical Shifts

  • Ulrich SternbergEmail author
  • Frank-Thomas Koch
  • Wolfram Prieß
  • Raiker Witter


Force field methods in combination with chemical shift target functions are used to investigate the structures of cellulose I and II. Since diffraction investigations of biopolymers like cellulose II are only of poor resolution, different models for the structure are discussed in the literature. These models were used as the starting point for force field optimizations with 13C chemical shift target functions. In these optimizations additionally to the total energy a pseudo-energy is minimized that depends harmonically on the difference between calculated and observed chemical shifts. In the case of cellulose II all four criteria: (i) total energy, (ii) pseudo-energy, (iii) chemical shift rms (root mean square) difference, and (iv) deviation from the diffraction data favour the structure model of Kolpak and Blackwell with two antiparallel carbohydrate chains. The CH2–OH group of one chain is in tg and that of the other chain in gt conformation. The chemical shift optimized fractional coordinates for cellulose II, Iα and Iβ are presented together with the calculated and experimental 13C chemical shifts.

13C chemical shifts Cellulose crystal structure Chemical shift target functions Geometry optimization NMR force field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Erata T., Kono H. and Takai M. 2002. Structural Analysis of Native Cellulose and Cellulose Derivatives by Solid State 2-Dimensional NMR Experiments. Polydays, Berlin, September 30-October 2, 2002.Google Scholar
  2. Erata T., Shikano T., Yunoki S. and Takai M. 1997. The complete assignment of the 13C CP/MAS NMR spectrum of native cellulose by using 13C labeled glucose. Cellulose Commun. 4: 128-131.Google Scholar
  3. Helgaker T. and Jorgensen P. 1992. Calculation of geometrical derivatives in molecular electronic structure. In Wilson S. and Diercksen G.H.F. (eds), Methods in Computational Molecular Physics. Plenum Press, New York, p. 353.Google Scholar
  4. Kearsley S.K. 1990. An algorithm for the simultaneous superposition of a structural series. J. Comput. Chem. 11: 1187-1192.Google Scholar
  5. Koch F.-Th., Prieß W., Witter R. and Sternberg U. 2000. Calculation of solid state 13C NMR spectra of cellulose Iα, Iβ and II using a semi-empirical approach and molecular dynamics. Macromol. Chem. Phys. 201: 1930-1939.Google Scholar
  6. Kolpak F.J. and Blackwell J. 1976. Determination of the structure of cellulose II. Macromolecules 9: 273-278.Google Scholar
  7. Kono H., Yunoki S., Shikano T., Fujiwara M., Erata T. and Takai M. 2002. CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J. Am. Chem. Soc. 124: 7506-7511.Google Scholar
  8. Langan P., Nishiyama Y. and Chancy H. 1999. A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J. Am. Chem. Soc. 121: 9940-9946.Google Scholar
  9. Lesage A., Bardet M. and Emsley L. 1999. Through-bond carbon-carbon connectivities in disordered solids by NMR. J. Am. Chem. Soc. 121: 10987-10993.Google Scholar
  10. Marhöfer R.J., Reiling S. and Brickmann J. 1996. Computer simulations of crystal structures and elastic properties of cellulose. Ber. Bunsenges. Phys. Chem. 100: 1350-1354.Google Scholar
  11. Möllhoff M. and Sternberg U. 2001. Molecular mechanics with fluctuating atomic charges-a new force field with a semiempirical charge calculation. J. Mol. Model. 7: 90-102.Google Scholar
  12. O'Keefe M. and Brese N.E. 1991. Atom size and bond lengths in molecules and crystals. J. Am. Chem. Soc. 113: 3226-3229.Google Scholar
  13. Raymond S., Kvick A. and Chanzy H. 1995. The structure of cellulose II: a revisit. Macromolecules 28: 8422-8425.Google Scholar
  14. Reiling S. and Brickmann J. 1995. Theoretical investigations on the structure and physical properties of cellulose. Macromol. Theory Simul. 4: 725-743.Google Scholar
  15. Sebastiani D., Goward G., Schnell I. and Parrinello M. 2002. NMR chemical shifts in periodic systems from first principles. Comput. Phys. Commun. 147: 707-710.Google Scholar
  16. Sternberg U. 1988. Second sphere theory for the interpretation of chemical shifts. J. Mol. Phys. 63: 249-267.Google Scholar
  17. Sternberg U., Koch F.-Th., Bräuer M., Kunert M. and Anders E. 2001. Molecular mechanics for zinc complexes with fluctuating atomic charges. J. Mol. Model. 7: 54-64.Google Scholar
  18. Sugiyama J., Voung R. and Chanzy H. 1991. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 20: 4168-4175.Google Scholar
  19. VanderHart D.L. and Atalla R.H. 1984. Studies of microstructure in native celluloses using solid state 13C NMR. Macromolecules 17: 1465-1472.Google Scholar
  20. Witter R., Hesse S. and Sternberg U. 2003. Powder pattern recoupling at ten kHz spinning speed applied on cellulose. J. Magn. Reson. 161: 35-42.Google Scholar
  21. Witter R., Prieß W. and Sternberg U. 2002a. Chemical shift driven molecular dynamics and geometry optimization. J. Comp. Chem. 23: 298-305.Google Scholar
  22. Witter R., Reißmann S., Greiner G., Syfart L., Weston J., Anders E. and Sternberg U. 2002b. J. Biomol. NMR 24: 277-289.Google Scholar
  23. Wüthrich K. 1995. NMR-This other method for protein and nucleic acid structure determination. Acta Crystallogr. D51-Biol. Crystallogr. 249-270.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ulrich Sternberg
    • 1
    Email author
  • Frank-Thomas Koch
    • 1
  • Wolfram Prieß
    • 1
  • Raiker Witter
    • 1
  1. 1.Physikalisch-Astronomische Fak.Friedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations