Molecular Biology

, Volume 37, Issue 4, pp 486–494 | Cite as

Differential Gene Expression Analysis by DNA Microarray Technology and Its Application in Molecular Oncology

  • A. E. Frolov
  • A. K. Godwin
  • O. O. Favorova


Accumulation of genetic and epigenetic aberrations leads to malignant transformation of normal cells. Functional studies of cancer using genomic and proteomic tools aim to reveal the true complexity of the processes leading to cancer development in humans. Until recently, diagnosis and prognosis of cancer was based on conventional pathologic criteria and epidemiological evidence. Certain tumors were divided only into relatively broad histological and morphological subcategories. Rapidly developing methods of differential gene expression analysis promote the search for clinically relevant genes changing their expression levels during malignant transformation. DNA microarrays offer a unique possibility to rapidly assess the global expression picture of thousands genes in any given time point and compare the results of detailed combinatory analysis of global expression profiles for normal and malignant cells at various functional stages or separate experimental conditions. Acquisition of such “genetic portraits” allows searching for regularity and difference in expression patterns of certain genes, understanding their function and pathological importance, and ultimately developing the “molecular nosology” of cancer. This review describes the basis of DNA microarray technology and methodology, and focuses on their application in molecular classification of tumors, drug sensitivity and resistance studies, and identification of biological markers of cancer.

differential gene expression differential display subtractive hybridization serial analysis of gene expression DNA microarrays transcriptome drug resistance biological markers of cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Celis J.E., Kruhoffer M., Gromova I., Frederiksen C., Ostergaard M., Thykjaer T., Gromov P., Yu J., Palsdottir H., Magnusson N., Orntoft T.F. 2000. Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett. 480, 2–16.Google Scholar
  2. 2.
    Rubina A.Yu., Pan'kov S.V., Ivanov S.M., Dement'eva E.I., Mirzabekov A.D. 2001. Protein microchips. Dokl. Akad. Nauk. 381, 701–704.Google Scholar
  3. 3.
    Mirzabekov A., Kolchinsky A. 2002. Emerging array-based technologies in proteomics. Current Opin. Chem. Biol. 6, 70–75.Google Scholar
  4. 4.
    Liang P., Pardee A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 257, 967–971.Google Scholar
  5. 5.
    Hedrick S.M., Nielsen E.A., Kavaler J., Cohen D.I., Davis M.M. 1984. Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature. 308, 153–158.Google Scholar
  6. 6.
    Diatchenko L., Lau Y.F., Campbell A.P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E.D., Siebert P.D. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA. 93, 6025–6030.Google Scholar
  7. 7.
    Velculescu V.E., Zhang L., Vogelstein B., Kinzler K.W. 1995. Serial analysis of gene expression. Science. 270, 484–487.Google Scholar
  8. 8.
    Stein J., Liang P. 2002. Differential display technology: a general guide. Cell Mol. Life Sci. 59, 1235–1240.Google Scholar
  9. 9.
    Wang X., Feuerstein G.Z. 2000. Suppression subtractive hybridisation: application in the discovery of novel pharmacological targets. Pharmacogenomics. 1, 101–108.Google Scholar
  10. 10.
    Weissman S. 1999. Patterns of mRNA expression. Methods Enzymol. 303, 165–411.Google Scholar
  11. 11.
    Phimister B. 1999. Chipping forecast. Nature Genet. 21, Suppl., 1–60.Google Scholar
  12. 12.
    Luk'yanov K.A., Gurskaya N.G., Bogdanova E.A., Luk'yanov S.A. 1999. Selective suppression of polymerase chain reaction. Bioorg. Khim. 25, 163–170.Google Scholar
  13. 13.
    Matz M.V., Lukyanov S.A. 1998. Different strategies of differential display: areas of application. Nucleic Acids Res. 26, 5537–5543.Google Scholar
  14. 14.
    Cho Y.J., Prezioso V.R., Liang P. 2002. Systematic analysis of intrinsic factors affecting differential display. Biotechniques. 32, 762–764, 766.Google Scholar
  15. 15.
    Bertioli D.J., Schlichter U.H., Adams M.J., Burrows P.R., Steinbiss H.H., Antoniw J.F. 1995. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 23, 4520–4523.Google Scholar
  16. 16.
    Ito T., Sakaki Y. 1997. Fluorescent differential display. Methods Mol. Biol. 85, 37–44.Google Scholar
  17. 17.
    Lievens S., Goormachtig S., Holsters M. 2001. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res. 29, 3459–3468.Google Scholar
  18. 18.
    Mills J.C., Roth K.A., Cagan R.L., Gordon J.I. 2001. DNA microarrays and beyond: completing the journey from tissue to cell. Nature Cell Biol. 3, E175–E178.Google Scholar
  19. 19.
    Duguid J.R., Dinauer M.C. 1990. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res. 18, 2789–2792.Google Scholar
  20. 20.
    Hara E., Kato T., Nakada S., Sekiya S., Oda K. 1991. Subtractive cDNA cloning using oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucleic Acids Res. 19, 7097–7104.Google Scholar
  21. 21.
    Hedrick S.M., Cohen D.I., Nielsen E.A., Davis M.M. 1984. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 308, 149–153.Google Scholar
  22. 22.
    Siebert P.D., Chenchik A., Kellogg D.E., Lukyanov K.A., Lukyanov S.A. 1995. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 23, 1087–1088.Google Scholar
  23. 23.
    Stollberg J., Urschitz J., Urban Z., Boyd C.D. 2000. A quantitative evaluation of SAGE. Genome Res. 10, 1241–1248.Google Scholar
  24. 24.
    Velculescu V.E. 1999. Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes-SAGE and its use in global gene expression analysis. Science. 286, 1491–1492.Google Scholar
  25. 25.
    Lipshutz R.J., Fodor S.P., Gingeras T.R., Lockhart D.J. 1999. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24.Google Scholar
  26. 26.
    Frolov A., Prowse A.H., Vanderveer L., Bove B., Wu H., Godwin A.K. 2002. DNA array-based method for detection of large rearrangements in the BRCA1 gene. Genes Chromosomes Cancer. 35, 232–241.Google Scholar
  27. 27.
    Ivanov I.B., Yershov G.M., Barsky V.E., Belgovskii A.I., Kirillov E.V., Kreindlin E.Ya., Parinov S.V., Mologina N.V., Mirzabekov A.D. 1997. Identification of gene mutations on oligonucleotide microchips. Mol. Biol. 31, 159–167.Google Scholar
  28. 28.
    Sverdlov E.D. 2001. Prospects of medical use of achievements in genomics: the beginning of era of complete genome medical genetics. Patol. Fiziol. Eksp. Ter. 1, 3–22.Google Scholar
  29. 29.
    Pollack J.R., Perou C.M., Alizadeh A.A., Eisen M.B., Pergamenschikov A., Williams C.F., Jeffrey S.S., Botstein D., Brown P.O. 1999. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41–46.Google Scholar
  30. 30.
    Tillib S.V., Mirzabekov A.D. 2001. Advances in the analysis of DNA sequence variations using oligonucleotide microchip technology. Current Opin. Biotechnol. 12, 53–58.Google Scholar
  31. 31.
    Kolchinsky A., Mirzabekov A. 2002. Analysis of SNPs and other genomic variations using gel-based chips. Human Mutat. 19, 343–360.Google Scholar
  32. 32.
    Haab B.B. 2001. Advances in protein microarray technology for protein expression and interaction profiling. Current Opin. Drug Discov. Devel. 4, 116–123.Google Scholar
  33. 33.
    Schena M., Shalon D., Davis R.W., Brown P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270, 467–470.Google Scholar
  34. 34.
    Proudnikov D., Timofeev E., Mirzabekov A. 1998. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips. Analyt. Biochem. 259, 34–41.Google Scholar
  35. 35.
    Vasiliskov A.V., Timofeev E.N., Surzhikov S.A., Drobyshev A.L., Shick V.V., Mirzabekov A.D. 1999. Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization. Biotechniques. 27, 592–600.Google Scholar
  36. 36.
    Chechetkin V.R., Turygin A., Proudnikov D., Prokopenko D., Kirillov E.V., Mirzabekov A.D. 2000. Sequencing by hybridization with the generic 6-mer oligonucleotide microarray: an advanced scheme for data processing. J. Biomol. Struct. Dyn. 18, 83–101.Google Scholar
  37. 37.
    Ohyama H., Mahadevappa M., Luukkaa H., Todd R., Warrington J.A., Wong D.T. 2002. Use of laser capture microdissection-generated targets for hybridization of high-density oligonucleotide arrays. Methods Enzymol. 356, 323–333.Google Scholar
  38. 38.
    Hoon D.S., Fujimoto A., Shu S., Taback B. 2002. Assessment of genetic heterogeneity in tumors using laser capture microdissection. Methods Enzymol. 356, 302–309.Google Scholar
  39. 39.
    Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C.A., Causton H.C., Gaasterland T., Glenisson P., Holstege F.C., Kim I.F., Markowitz V., Matese J.C., Parkinson H., Robinson A., Sarkans U., Schulze-Kremer S., Stewart J., Taylor R., Vilo J., Vingron M. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet. 29, 365–371.Google Scholar
  40. 40.
    Eisen M.B., Spellman P.T., Brown P.O., Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 95, 14863–14868.Google Scholar
  41. 41.
    Tavazoie S., Hughes J.D., Campbell M.J., Cho R.J., Church G.M. 1999. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285.Google Scholar
  42. 42.
    Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., Lander E.S., Golub T.R. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA. 96, 2907–2912.Google Scholar
  43. 43.
    Shannon W., Culverhouse R., Duncan J. 2003. Analyzing microarray data using cluster analysis. Pharmacogenomics. 4, 41–52.Google Scholar
  44. 44.
    Su A.I., Welsh J.B., Sapinoso L.M., Kern S.G., Dimitrov P., Lapp H., Schultz P.G., Powell S. M., Moskaluk C.A., Frierson H.F., Jr., Hampton G.M. 2001. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 61, 7388–7393.Google Scholar
  45. 45.
    Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 286, 531–537.Google Scholar
  46. 46.
    Macgregor P.F., Squire J.A. 2002. Application of microarrays to the analysis of gene expression in cancer. Clin. Chem. 48, 1170–1177.Google Scholar
  47. 47.
    Sreekumar A., Chinnaiyan A.M. 2002. Using protein microarrays to study cancer. Biotechniques. Suppl., 46–53.Google Scholar
  48. 48.
    Chung C.H., Bernard P.S., Perou C.M. 2002. Molecular portraits and the family tree of cancer. Nature Genet. 32, 533–540.Google Scholar
  49. 49.
    Rhodes D.R., Chinnaiyan A.M. 2002. DNA microarrays: implications for clinical medicine. J. Invest Surg. 15, 275–279.Google Scholar
  50. 50.
    Mohr S., Leikauf G.D., Keith G., Rihn B.H. 2002. Microarrays as cancer keys: an array of possibilities. J. Clin. Oncol. 20, 3165–3175.Google Scholar
  51. 51.
    Sorlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Thorsen T., Quist H., Matese J.C., Brown P.O., Botstein D., Eystein Lonning P., Borresen-Dale A.L. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA. 98, 10869–10874.Google Scholar
  52. 52.
    Bittner M., Meltzer P., Chen Y., Jiang Y., Seftor E., Hendrix M., Radmacher M., Simon R., Yakhini Z., Ben-Dor A., Sampas N., Dougherty E., Wang E., Marincola F., Gooden C., Lueders J., Glatfelter A., Pollock P., Carpten J., Gillanders E., Leja D., Dietrich K., Beaudry C., Berens M., Alberts D., Sondak V. 2000. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 406, 536–540.Google Scholar
  53. 53.
    Bhattacharjee A., Richards W.G., Staunton J., Li C., Monti S., Vasa P., Ladd C., Beheshti J., Bueno R., Gillette M., Loda M., Weber G., Mark E.J., Lander E.S., Wong W., Johnson B.E., Golub T.R., Sugarbaker D.J., Meyerson M. 2001. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA. 98, 13790–13795.Google Scholar
  54. 54.
    Kudoh K., Ramanna M., Ravatn R., Elkahloun A.G., Bittner M.L., Meltzer P.S., Trent J.M., Dalton W.S., Chin K.V. 2000. Monitoring the expression profiles of doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microarray. Cancer Res. 60, 4161–4166.Google Scholar
  55. 55.
    Bayani J., Brenton J.D., Macgregor P.F., Beheshti B., Albert M., Nallainathan D., Karaskova J., Rosen B., Murphy J., Laframboise S., Zanke B., Squire J.A. 2002. Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res. 62, 3466–3476.Google Scholar
  56. 56.
    Hegde P., Qi R., Gaspard R., Abernathy K., Dharap S., Earle-Hughes J., Gay C., Nwokekeh N. U., Chen T., Saeed A.I., Sharov V., Lee N.H., Yeatman T.J., Quackenbush J. 2001. Identification of tumor markers in models of human colorectal cancer using a 19,200-element complementary DNA microarray. Cancer Res. 61, 7792–7797.Google Scholar
  57. 57.
    Luo J., Duggan D.J., Chen Y., Sauvageot J., Ewing C.M., Bittner M.L., Trent J.M., Isaacs W.B. 2001. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61, 4683–4688.Google Scholar
  58. 58.
    Clark E.A., Golub T.R., Lander E.S., Hynes R.O. 2000. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 406, 532–535.Google Scholar
  59. 59.
    Kim J.H., Skates S.J., Uede T., Wong K.K., Schorge J.O., Feltmate C.M., Berkowitz R.S., Cramer D.W., Mok S.C. 2002. Osteopontin as a potential diagnostic biomarker for ovarian cancer. Jama. 287, 1671–1679.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • A. E. Frolov
    • 1
    • 2
  • A. K. Godwin
    • 2
  • O. O. Favorova
    • 1
  1. 1.Department of Molecular Biology and Medical BiotechnologyRussian State Medical UniversityMoscowRussia
  2. 2.Department of Medical OncologyFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations