Journal of Applied Spectroscopy

, Volume 70, Issue 3, pp 456–464 | Cite as

Optical Resonances of the Systems of Nanoparticles with a Metallic Shell

  • G. P. Shevchenko
  • A. N. Ponyavina
  • S. M. Kachan
  • Z. M. Afanas'eva
  • V. S. Gurin


Characteristic features of the formation of the plasma resonance absorption spectra of double-layer nanoparticles with a dielectric core and metal shell were investigated theoretically and experimentally. Two peaks of the surface plasma resonances were observed with the example of an AgI–Ag system. The model of the conductivity electron free path limitation suggested by Kreibig for describing the dimensional dependence of the optical constants of homogeneous spherical metal nanoparticles was extended to the case where metal is concentrated in the shell of the particle. It is established that allowance for the dimensional effect leads to a decrease in plasma resonance absorption and expansion, with the two-peak band structure being preserved. The influence of the metal shell granularity and the degree of the polydispersity of particles on the spectral position, halfwidth, and absolute value of absorption resonances was investigated.

metal-containing nanoparticles plasma absorption resonances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Pelizzetti (ed.), Fine Particles Science and Technology: From Micro to Nanoparticles, Kluwer Academic Publishers (1996).Google Scholar
  2. 2.
    V. M. Shalaev (ed.), Optical Properties of Nanostructured Random Media, Springer-Verlag, Berlin-Heidelberg (2002).Google Scholar
  3. 3.
    S. Kawata (ed.), Near-Field Optics and Surface Plasmon Polaritons, Springer-Verlag, Berlin-Heidelberg (2001).Google Scholar
  4. 4.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin (1995).Google Scholar
  5. 5.
    L. Genzel, T. P. Martin, and U. Kreibig, Z. Phys., B21, 339-345 (1975).Google Scholar
  6. 6.
    A. A. Lushnikov, V. V. Maksimenko, and A. Ya. Simonov: Dispersed Metal Films [in Russian], Kiev (1976), pp. 72-84Google Scholar
  7. 7.
    S. M. Kachan and A. N. Ponyavina: Physics, Chemistry and Application of Nanostructures, World Scientific, Singapore (1999), pp. 103-107.Google Scholar
  8. 8.
    S. M. Kachan and A. N. Ponyavina, J. Mol. Struct., 563-564, 267-272 (2001).Google Scholar
  9. 9.
    Yu. I. Petrov, Clusters and Small Particles [in Russian], Moscow (1986).Google Scholar
  10. 10.
    A. V. Loginov, V. V. Gorbunova, and T. B. Boitsova, Zh. Org. Khim., 67, 189-201 (1997).Google Scholar
  11. 11.
    G. P. Shevchenko and Z. M. Afanas'eva: Physics, Chemistry and Application of Nanostructures, World Scientific, Singapore (1999), pp. 233-235.Google Scholar
  12. 12.
    G. P. Shevchenko and S. K. Rakhmanov: Synthesis, Structure, and Properties of Inorganic Substances and Colloid Systems [in Russian], Collection of Papers, Minsk (2000), pp. 166-180.Google Scholar
  13. 13.
    A. L. Aden and M. Kerker, J. Appl. Phys., 22, 1242-1246 (1951).Google Scholar
  14. 14.
    C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles [Russian translation], Moscow (1986).Google Scholar
  15. 15.
    U. Kreibig and C. V. Fragstein, Z. Phys., 224, 307-323 (1969).Google Scholar
  16. 16.
    U. Kreibig, J. Phys. F, Metal Phys., 4, 999-1014 (1974).Google Scholar
  17. 17.
    P. B. Johnson and R. W. Christy, Phys. Rev., B12, 4370-4379 (1972).Google Scholar
  18. 18.
    R. J. Gehr and R. W. Boyd, Chem. Matter, 8, 1807-1818 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • G. P. Shevchenko
    • 1
  • A. N. Ponyavina
    • 2
  • S. M. Kachan
    • 2
  • Z. M. Afanas'eva
    • 1
  • V. S. Gurin
    • 1
  1. 1.Scientific-Research Institute for Physicochemical ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations