Advertisement

Journal of Applied Spectroscopy

, Volume 70, Issue 3, pp 378–384 | Cite as

Collisional Relaxation of the Optically Induced Dichroism of Complex Molecules in a Gas Phase

  • A. P. Blokhin
  • M. F. Gelin
  • O. V. Buganov
  • V. A. Dubovskii
  • S. A. Tikhomirov
  • G. B. Tolstorozhev
Article

Abstract

The transformation of molecular rotation with rise of the buffer gas pressure is studied. The evolution of the optically induced anisotropy is measured for perylene and 1,4-di[2-(5-phenyloxazolyl)]benzene (POPOP) in pentane at high pressures. The orientational relaxation is shown to be governed not only by the buffer gas pressure (which determines the collision frequency), but also by the efficiency of the collisional angular momentum transfer. The orientational relaxation of perylene falls in between the predictions of the strong (J diffusion) and weak (Fokker–Planck equation) collision models. The situation is found to be closer to the latter, and four collisions with pentane are approximately necessary for randomization of the perylene angular momentum. The orientational relaxation of POPOP in the vicinity of the critical liquid–gas point is demonstrated to be almost independent of the pentane pressure in the range 45–130 atm, which is a manifestation of rotational diffusion. Generally, it was found that perylene rotates more freely than POPOPdeed, under the pentane pressure of the order of 50 atm, the rotation of POPOP is highly damped and is described by the diffusion equation. On the other hand, the orientational relaxation of perylene under pentane pressures of about 100 atm exhibits characteristic features arising due to inertial effects.

anisotropy relaxation molecular rotation binary collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotations in Gases and Liquids, Cambridge University Press, Cambridge (1994).Google Scholar
  2. 2.
    A. B. Myers, M. A. Pereira, P. L. Holt, and R. M. Hochstrasser, J. Chem. Phys., 86, 5146-5155 (1986).Google Scholar
  3. 3.
    M. A. Pereira, P. E. Share, M. J. Sarisky, and R. M. Hochstrasser, J. Chem. Phys., 94, 2513-2522 (1991).Google Scholar
  4. 4.
    Y. Zhang, M. I. Sluch, M. M. Somoza, and M. A. Berg, J. Chem. Phys., 115, 4112-4231 (2001).Google Scholar
  5. 5.
    J. S. Baskin and A. H. Zewail, J. Phys. Chem. A, 105, 3680-3693 (2001).Google Scholar
  6. 6.
    N. A. Borisevich, E. V. Khoroshilov, I. V. Kryukov, A. V. Sharkov, A. P. Blokhin, and G. B. Tolstorozhev, Chem. Phys. Lett., 191, 225-231 (1992).Google Scholar
  7. 7.
    J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, Chem. Phys. Lett., 275, 437-444 (1997).Google Scholar
  8. 8.
    J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A, 102, 4158-4171 (1998).Google Scholar
  9. 9.
    A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovskii, S. A. Tikhomirov, and G. B. Tolstorozhev, Zh. Prikl. Spektrosk., 70, 66-72 (2003).Google Scholar
  10. 10.
    A. P. Blokhin and M. F. Gelin, Khim. Fiz., 16, 39-49; 50-59 (1997).Google Scholar
  11. 11.
    A. P. Blokhin and M. F. Gelin, Khim. Fiz., 13, No. 1, 14-20 (1994).Google Scholar
  12. 12.
    A. P. Blokhin and M. F. Gelin, J. Mol. Liq., 93, 47-50 (2001).Google Scholar
  13. 13.
    J. O'Dell and B. J. Berne, J. Chem. Phys., 63, 2376-2394 (1975).Google Scholar
  14. 14.
    M. F. Gelin, J. Phys. Chem. A, 104, 6150-6151 (2000).Google Scholar
  15. 15.
    N. A. Borisevich, S. P. Pliska, and V. A. Tolkachev, Dokl. Akad. Nauk SSSR, 261, No. 5, 1109-1114 (1986).Google Scholar
  16. 16.
    N. A. Borisevich, V. V. Gavrilyuk, V. A. Povedailo, and V. A. Tolkachev, Dokl. Akad. Nauk SSSR, 305, 1344-1346 (1989).Google Scholar
  17. 17.
    A. P. Blokhin and M. F. Gelin, Chem. Phys., 252, 323-335 (2000).Google Scholar
  18. 18.
    A. P. Blokhin and M. F. Gelin, Mol. Phys., 87, 455-468 (1996).Google Scholar
  19. 19.
    A. P. Blokhin, M. F. Gelin, I. I. Kalosha, V. V. Matylitsky, N. P. Erohin, M. V. Barashkov, and V. A. Tolkachev, Chem. Phys., 272, 69-76 (2001).Google Scholar
  20. 20.
    V. M. Zhdanov and M. Ya. Alievskii, Processes of Transport and Relaxation in Molecular Gases [in Russian], Moscow (1989).Google Scholar
  21. 21.
    M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Adv. Chem. Phys., 83, 89-121 (1993).Google Scholar
  22. 22.
    D. Chandler, J. Chem. Phys., 62, 1358-1363 (1975).Google Scholar
  23. 23.
    S. P. Pliska and V. A. Tolkachev, Zh. Prikl. Spektrosk., 50, No. 5, 47-50 (1989).Google Scholar
  24. 24.
    V. A. Gaisenok and A. M. Sarzhevskii, Anisotropy of Absorption and Luminescence of Polyatomic Molecules [in Russian], Minsk (1986).Google Scholar
  25. 25.
    J. Garcia de la Torre: Molecular Electro-Optics, Plenum, New York (1981).Google Scholar
  26. 26.
    L. D. Favro, Phys. Rev., 119, 53-62 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. P. Blokhin
    • 1
  • M. F. Gelin
    • 1
  • O. V. Buganov
    • 1
  • V. A. Dubovskii
    • 1
  • S. A. Tikhomirov
    • 1
  • G. B. Tolstorozhev
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations