, Volume 10, Issue 3, pp 227–236

Inorganic Molten Salts as Solvents for Cellulose

  • S. Fischer
  • H. Leipner
  • K. Thümmler
  • E. Brendler
  • J. Peters


Inorganic molten salts can be used as efficient solvents for cellulose in a wide range of degrees of polymerization. Furthermore, molten salts can be applied as reaction medium for the derivatization of cellulose. For both dissolution and derivatization of cellulose, knowledge of the solution state as well as information about chemical interactions with the solvent system is essential. Using the melts of LiClO4·3H2O, NaSCN/KSCN/LiSCN·2H2O and LiCl/ZnCl2/H2O as cellulose solvents, factors which determine the dissolving ability will be discussed. Besides the specific structure of the molten salt hydrate, the cation and the water content of the melt are the most important factors for the dissolving capability of a molten salt hydrate system. FT-Raman spectroscopy, 7Li and 13C NMR spectroscopy were applied to describe solvent–cellulose interactions and the state of cellulose dissolved in the molten salts. Using Raman and solid state NMR spectroscopy it was proved that cellulose is amorphous in the frozen solvent system. The application of inorganic molten salts as a medium for cellulose functionalization is demonstrated for cellulose carboxymethylation and acetylation.

Acetylation Carboxymethylation Molten inorganic salts NMR Raman Solvents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baar A., Kulicke W.-M., Szablikowski K. and Kiesewetter R. 1994. Nuclear magnetic resonance spectroscopic characterisation of carboxymethyl cellulose. Macromol. Chem. Phys. 195: 1483-1492.Google Scholar
  2. Braun S., Kalinowski H.-O. and Berger S. 1998. 150 and More Basic NMR Experiments. VCH, Weinheim, Germany, pp. 413-415.Google Scholar
  3. Brendler E., Fischer S. and Leipner H. 2002. 7Li NMR as probe for solvent-cellulose interactions in cellulose dissolution. Cellulose 8: 283-288.Google Scholar
  4. Cao N.J., Xu Q., Chen C.S., Gong C.S. and Chen L.F. 1994. Appl. Biochem. Biotechnol. 45: 521-530.Google Scholar
  5. Fischer K., Schmidt I. and Hintze H. 1994. Untersuchungen zur Substituentenverteilung in Cellulosexanthogenat. Papier 48: 769-774.Google Scholar
  6. Fischer S., Voigt W., Fischer K., Spange S. and Vilsmeier E. 1998. Behaviour of cellulose in hydrated melts. Molten Salt Forum 5-6: 477-480.Google Scholar
  7. Fischer S., Voigt W. and Fischer K. 1999a. The behaviour of cellulose in hydrated melts of the composition LiX · nH2O (X=I-, NO3 -, CH3COO-, ClO4 -). Cellulose 6: 213-219.Google Scholar
  8. Fischer S., Leipner H., Brendler E, Voigt W. and Fischer K. 1999b. Molten inorganic salt hydrates as cellulose solvents. ACS Symp. Ser. 737: 143-150.Google Scholar
  9. Fischer S., Leipner H., Liebert T. and Heinze Th. 2001. An alternative approach for deprotection of triphenylmethyl cellulose. Polym. Bull. 45: 517-521.Google Scholar
  10. Fischer S., Thümmler K., Pfeiffer K., Liebert T. and Heinze T. 2002. Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose 9: 293-300.Google Scholar
  11. Gronski W. and Hellmann G. 1987. NMR-spektroskopische Charakterisierung von Carboxymethylcellulose. Papier 41: 668-672.Google Scholar
  12. Hattori M., Shimaya Y. and Saito M. 1998a. Structural changes in wood pulp treated by 55 wt% aqueous calcium thiocyanate solution. Polym. J. 30: 37-42.Google Scholar
  13. Hattori M., Shimaya Y. and Saito M. 1998b. Aqueous calcium thiocyanate solution as a cellulose solvent, structure and interactions with cellulose. Polym. J. 30: 43-48.Google Scholar
  14. Hattori M., Shimaya, Y. and Saito M. 1998c. Solubility of dissolved cellulose in aqueous calcium-and sodium thiocyanate solution. Polym. J. 30: 49-55.Google Scholar
  15. Heinze Th. and Pfeiffer K. 1999. Studies on synthesis and characterisation of carboxymethylcellulose. Angew. Makromol. Chem. 266: 37-45.Google Scholar
  16. Heinze Th., Erler U., Nehls I. and Klemm D. 1994. Determination of the substitution pattern of heterogeneously and homogeneously synthesized carboxymethyl cellulose by using high performance liquid chromatography. Angew. Makromol. Chem. 215: 93-106.Google Scholar
  17. Heinze Th., Liebert T., Klüfers P. and Meister F. 1999. Carboxymethylation of cellulose in unconventional media. Cellulose 6: 153-165.Google Scholar
  18. Katz J.R. and Derksen J.C. 1930. Zur Erklärung der Quellkraft der Rhodanide und über Verbindungen von Cellulose mit Neutralsalzen. Rec. Trav. Chim. 50: 149-152.Google Scholar
  19. Kuga S. 1980. The porous structure of cellulose gel regenerated from calcium thiocyanate solution. J. Coll. Interf. Sci. 77: 413-418.Google Scholar
  20. Leipner H. 2002. Salzhydratschmelzen als Lösemedien für Cellulose und Cellulosederivate. Dissertation A, University of Freiberg, Germany.Google Scholar
  21. Leipner H., Fischer S., Brendler E. and Voigt W. 2000. Structural changes of cellulose dissolved in molten salt hydrates. Macromol. Chem. Phys. 201: 2041-2049.Google Scholar
  22. Letters K. 1932. Viskosimetrische Untersuchungen über die Reaktion von Cellulose mit konzentrierten Chlorzinklösungen. Kolloidzeitschrift 58: 229-235.Google Scholar
  23. Liebert T. and Heinze Th. 1998. Induced phase separation: a new synthesis concept in cellulose chemistry. ACS Symp. Ser. 688: 61-72.Google Scholar
  24. Lukanoff B., Schleicher H. and Philipp B. 1983. Untersuchungen zur Auflösung und Verformung von Cellulose in Schmelzen und konzentrierten Lösungen verschiedener Thiocyanate. Cell. Chem. Technol. 17: 593-599.Google Scholar
  25. Morgenstern B., Kramer H.W., Berger W. and Skrabal P. 1992. 7Li-NMR study on cellulose/LiCl/N,N-dimethylacetamide solutions. Acta Polym. 43: 356-357.Google Scholar
  26. Nehls I., Wagenknecht W., Philipp B. and Stscherbina D. 1994. Characterization of cellulose and cellulose derivatives in solution by HR 13C-NMR spectroscopy. Prog. Polym. Sci. 78: 1929-1979.Google Scholar
  27. Röder T. 1998. Lösungsstrukturen von Cellulose in N-Methylmorpholine-N-oxide-monohydrate. Dissertation A, TU Dresden, Germany.Google Scholar
  28. Röder T. and Morgenstern B. 1999. The influence of activation on the solution state of cellulose dissolved in N-methylmorpholine-N-oxide-monohydrate. Polymer 40: 4143-4147.Google Scholar
  29. Schenzel K. and Fischer S. 2001. NIR FT Raman spectroscopy-a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8: 49-57.Google Scholar
  30. Thümmler K. and Fischer S. 2003. Preparation of cellulose acetate using inorganic molten salts (in preparation).Google Scholar
  31. Warwicker J.O., Jeffries R., Colbran I. and Robinson R.N. 1966. A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. Shirley Institute Pamphlet No. 93, Manchester, UK.Google Scholar
  32. Weimarn P.P. 1912. Zur Dispersoidchemie von Cellulose. Kolloidzeitschrift 11: 41-47.Google Scholar
  33. Xu Q. and Chen L.F. 1996. Preparing cellulose fibre from zinc-cellulose complexes. Textile Techn. Int. 40: 19-21.Google Scholar
  34. Yu Ch. and Levy G.C. 1984. Two-dimensional heteronuclear NOE (HOESY) experiments: investigation of dipolar interactions between heteronuclei and nearby protons. J. Am. Chem. Soc. 106: 6533-6537.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Fischer
    • 1
  • H. Leipner
    • 1
  • K. Thümmler
    • 1
  • E. Brendler
    • 2
  • J. Peters
    • 2
  1. 1.Institut für Anorganische Chemie der TU Bergakademie FreibergFreibergGermany
  2. 2.Institut für Analytische Chemie der TU Bergakademie FreibergFreibergGermany

Personalised recommendations