Optical and Quantum Electronics

, Volume 35, Issue 10, pp 931–946 | Cite as

An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials

  • E. P. Kosmidou
  • T. D. Tsiboukis
Article

Abstract

A finite difference time domain (FDTD) study of two-dimensional photonic crystals containing nonlinear materials is presented in this paper. An appropriate Z-transform oriented formulation of the FDTD method for the simulation of third-order nonlinear Kerr- and Raman-type media is analyzed and applied to model nonlinear photonic crystal waveguide structures. For their reflectionless termination a novel perfectly matched layer (PML) is proposed and evaluated comparatively to other periodic and inhomogeneous absorbers. Furthermore, the absorbing efficiency of the proposed PML is investigated varying its parameters.

FDTD methods nonlinear optics perfectly matched layers photonic crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayindir, M., B. Temelkuran and E. Ozbay. Appl. Phys. Lett. 77 3902, 2000.Google Scholar
  2. Berenger, J.-P. J. Comput. Phys. 114 185, 1994.Google Scholar
  3. El-Kady, I., M.M. Sigalas, R. Biswas and K.M. Ho. IEEE J. Lightwave Tech. 17 2042, 1999.Google Scholar
  4. Fang, J. and Z. Wu. IEEE Trans. Microwave Theory Tech. 44 2216, 1996.Google Scholar
  5. Joannopoulos, J.D., R.D. Meade and J.N. Winn. Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.Google Scholar
  6. Joseph, R.M. and A. Taflove. IEEE Trans. Antennas Prop. 45, 364, 1997.Google Scholar
  7. Kelly, P.K. and M. Piket-May. IEEE J. Lightwave Tech. 17 1008, 1999.Google Scholar
  8. Koshiba, M., Y. Tsuji and S. Sasaki. IEEE Microwave Wireless Comp. Lett. 11 152, 2001.Google Scholar
  9. Mekis, A., J.C. Chen, I. Kurland, S. Fan, P. Villeneuve and J.D. Joannopoulos. Phys. Rev. Lett. 77 3787, 1996.Google Scholar
  10. Mekis, A., S. Fan and J.D. Joannopoulos. IEEE Microwave Guided Wave Lett. 9 502, 1999.Google Scholar
  11. Mingaleev, S. and Y. Kivshar. Opt. Photon. News 48, 2002.Google Scholar
  12. Qiu, M. and S. He. Physica B 299 187, 2001.Google Scholar
  13. Scholz, S., O. Hess and R. Ruhle. Opt. Expr., 3 28, 1998.Google Scholar
  14. Stoffer, R., H.J.W.M. Hoekstra, R.M. De Ridder, E. Van Groesen and F.P.H. Van Beckum. Opt. Quant. Electron. 32 947, 2000.Google Scholar
  15. Sullivan, D.M. IEEE Trans. Microwave Theory Tech. 43 676, 1995.Google Scholar
  16. Taflove, A. Advances in Computational Electrodynamics, Artech House, Norwood, MA, 1998.Google Scholar
  17. Thèvenot, M., A. Reineix and B. Jecko. J. Opt. A: Pure Appl. Opt. 1, 495, 1999.Google Scholar
  18. Tanaka, T., S. Noda, A. Chutinan, T. Asano and N. Yamamoto. Opt. Quant. Electron. 34 37, 2002.Google Scholar
  19. Tran, P. Optics Lett. 21, 1138, 1996.Google Scholar
  20. Zhao, A.P. Application of the material-independent PML absorbers to the FDTD analysis of electromagnetic waves in nonlinear media. IEEE Trans. Microwave Theory Tech. 46 1511, 1998.Google Scholar
  21. Ziolkowski, R.W. and M. Tanaka. Opt. Quant. Electron. 31 843, 1999.Google Scholar
  22. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58 2059, 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • E. P. Kosmidou
    • 1
  • T. D. Tsiboukis
    • 1
  1. 1.Department of Electrical and Computer EngineeringAristotle University of Thessaloniki, GR-ThessalonikiGreece;

Personalised recommendations