Advertisement

Differential Equations

, Volume 39, Issue 1, pp 66–72 | Cite as

Properties of Solutions of the Inverse Stefan Problem

  • N. L. Gol'dman
Article

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Stefan Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gol'dman, N.L., Inverse Stefan Problems, Dordrecht, 1997.Google Scholar
  2. 2.
    Gol'dman, N.L., Obratnye zadachi Stefana. Teoriya i metody resheniya (Inverse Stefan Problems. Theory and Methods), Moscow, 1999.Google Scholar
  3. 3.
    Gol'dman, N.L., Theory and Methods for Inverse Stefan Problems, Doctoral (Phys.-Math.) Dissertation, Moscow, 2000.Google Scholar
  4. 4.
    Ladyzhenskaya, O.A., Solonnikov, V.A., and Ural'tseva, N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa (Linear and Quasilinear Equations of Parabolic Type), Moscow, 1967.Google Scholar
  5. 5.
    Landis, E.M., Uspekhi Mat. Nauk, 1959, vol. 14, no. 1, pp. 21-85.Google Scholar
  6. 6.
    Oleinik, O.A., Dokl. Akad. Nauk SSSR, 1960, vol. 135, no. 5, pp. 1054-1057.Google Scholar
  7. 7.
    Meirmanov, A.M., Zadacha Stefana (The Stefan Problem), Novosibirsk, 1986.Google Scholar
  8. 8.
    Friedman, A., Trans. Amer. Math. Soc., 1968, vol. 133, pp. 89-114.Google Scholar
  9. 9.
    Budak, B.M. and Gaponenko, Yu.L., in Resheniya zadach Stefana (Solutions of Stefan Problems), Moscow, 1971, pp. 235-312.Google Scholar
  10. 10.
    Pavlov, I., Free Boundary Problems: Theory and Applications, Boston, 1983.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • N. L. Gol'dman
    • 1
  1. 1.Computer Research CenterMoscow State UniversityMoscowRussia

Personalised recommendations