Journal of Applied Phycology

, Volume 15, Issue 4, pp 319–324 | Cite as

Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption

  • Takao Furuki
  • Shuichi Maeda
  • Satoshi Imajo
  • Tetsuya Hiroi
  • Tsutomu Amaya
  • Takahiko Hirokawa
  • Kazuo Ito
  • Hiroko Nozawa

Abstract

A study was conducted on the efficiency of phycocyanin extraction from Spirulina platensis (Arthrospira platensis) cells disrupted by ultrasonic irradiation. Extraction followed first-order kinetics with respect to the length of time for irradiation. The first-order rate constant increased linearly with the output of ultrasonic irradiation. In order to extract phycocyanin there was an appropriate range of ultrasonic frequency, fu. In addition the most important finding is that the purity of phycocyanin in its crude extract depended on fu. For example, phycocyanin was extracted with higher purity at fu = 28 kHz than at fu = 20 kHz. It is suggested that rapid and selective extraction of phycocyanin from S. platensis may be possible if an optimized ultrasonic application is developed for a given suspension.

Arthrospira Chromoprotein Extraction Phycocyanin Sonication Spirulina platensis Ultrasonic cell disruption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belay A., Ota Y., Miyakawa K. and Shimamatsu H. 1993. Current knowledge on potential health benefits of Spirulina. J. appl. Phycol. 5: 235-241.Google Scholar
  2. Boussiba S. and Richmand A.E. 1979. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch. Microbiol. 120: 155-159.Google Scholar
  3. Brejc K., Ficner R., Huber R. and Steinbacher S. 1995. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobaterium Spirulina platensis at 2.3A resolution. J. mol. Biol. 249: 424-440.Google Scholar
  4. Chen F., Zhang Y. and Guo S. 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotech. Letters 18: 603-608.Google Scholar
  5. Devi M.A., Subbulakshmi G., Devi K.M. and Venkataraman L.V. 1981. Studies on the proteins of mass-cultivated blue-green alga( Spirulina platensis). J. agric. Food Chem. 29: 522-525.Google Scholar
  6. Furuki T. 2000. Effect of stereochemistry on the anti-freeze characteristics of carbohydrates. A thermal study of aqueous monosaccharides at subzero temperatures. Carbohydr. Res. 323: 185-191.Google Scholar
  7. Furuki T. 2002. Effect of molecular structure on thermodynamic properties of carbohydrates. A calorimetric study of aqueous diand oligo-saccharides at subzero temperatures. Carbohydr. Res. 337: 441-450.Google Scholar
  8. Fujita Y. and Hattori A. 1960. Formation of phycoerythrin in preilluminated cells of Tolypothrix Tenuis with special preference to nitrogen metabolism. Plant and Cell Physiol. 1: 281-292.Google Scholar
  9. Gantt E. 1981. Phycobilisomes. Ann. Rev. Plant Physiol. 32: 327- 347.Google Scholar
  10. Gonzalez R., Rodriguez S., Romay C., Ancheta O., Gonzalez A., Armesto J. et al. 1999. Anti-inflammatory activity of phycocyain extract in acetic acid-induced colitis in rats. Pharmacol. Res. 39: 55-59.Google Scholar
  11. Hirata T., Tanaka M., Ooike M., Tsunomura T. and Sakaguchi M. 2000. Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J. appl. Phycol. 12: 435-439.Google Scholar
  12. Kato T. 1985. Blue pigment from Spirulina. (In Japanese). Food Chemical 8: 40-46.Google Scholar
  13. Kato T. 1991. Chemistry of microalgae and their application to foods. (In Japanese). Monthly Food Chem. 8: 30-35.Google Scholar
  14. Li D.M. and Qi Y.Z. 1997. Spirulina industry in China: Present status and future prospects. J. appl. Phycol. 9: 25-28.Google Scholar
  15. Liu Y., Xu L., Cheng N., Lin L. and Zhang C. 2000. Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J. appl. Phycol. 12: 125-130.Google Scholar
  16. Marquez F.J., Sasaki K., Kakizono T., Nishio N. and Nagai S. 1993. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioengineering 76: 408-410.Google Scholar
  17. Murakami A., Mimuro M., Ohki K. and Fujita Y. 1981. Absorption spectrum of allophycocyanin isolated from Anabaena cylindrica: Variation of the absorption spectrum induced by changes of the physico-chemical environment. J. Biochem. 89: 79-86.Google Scholar
  18. Oranda H.W.K., Mercedes R.E. and Donald S.B. 1975. Physicalchemical properties of C-phycocyanin isolated from an acidthermophilic eukaryote, Cyanidium caldarium. Biochem. J. 147: 63-70.Google Scholar
  19. Romay C., Armesto J., Remirez D., Gonzalez R., Ledon N. and Garcia I. 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 47: 36- 41.Google Scholar
  20. Romay C. and Gonzalez R. 2000. Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. J. pharm. Pharmacol. 52: 367-368.Google Scholar
  21. Scheer H. and Kufer W. 1977. Conformational studies on c-phycocyanin from Spirulina platensis. Z. Naturforsch 32c: 513- 519.Google Scholar
  22. Tanabe Y. 1979. Phycocyanin. (In Japanese). New Food Industry 21: 43-46.Google Scholar
  23. Tomaselli L., Boldrini G. and Margheri M.C. 1997. Physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to changes in irradiance. J. appl. Phycol. 9: 37-43.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Takao Furuki
    • 1
  • Shuichi Maeda
    • 1
  • Satoshi Imajo
    • 1
  • Tetsuya Hiroi
    • 1
  • Tsutomu Amaya
    • 1
  • Takahiko Hirokawa
    • 1
  • Kazuo Ito
    • 2
  • Hiroko Nozawa
    • 3
  1. 1.Kanagawa Industrial Technology Research InstituteEbinaJapan
  2. 2.Tosho DenkiMinami-Ku, YokohamaJapan
  3. 3.Department of Social Information Studies, School of Social InformationOtsuma Women's UniversityTamaJapan

Personalised recommendations