Journal of Fluorescence

, Volume 13, Issue 3, pp 261–265 | Cite as

Use of the Direct Epifluorescent Filter Technique for the Enumeration of Viable and Total Acetic Acid Bacteria from Vinegar Fermentation

  • M. M. Mesa
  • M. Macías
  • D. Cantero
  • F. Barja


A rapid epifluorescence staining method using the LIVE/DEAD® BacLight™ Bacterial Viability kit was applied to differentiate both viable and total counts of acetic acid bacteria in vinegar fermentation. The results obtained were compared with those from other measurement techniques: 4′,6-diamidine-2phenyl indole (DAPI) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and colony counts. BacLight total counts were comparable to DAPI (differing by <3.5%). BacLight viable counts were similar to CTC counts but considerable higher than colony-forming cells in plates.

Vinegar acetic acid bacteria acetators BacLight DAPI CTC viability staining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Mesa, I. Caro, and D. Cantero (1996) Viability reduction of Acetobacter aceti due to the absence of oxygen in submerged cultures. Biotechnol. Progr. 12, 709–712.Google Scholar
  2. 2.
    G. G. Rodriguez, D. Phipps, K. Ishiguro, and H. F. Ridgway (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58, 1801–1808.Google Scholar
  3. 3.
    J. Coallier, M. Prévost, and A. Rompré (1994) The optimization and application of two direct viable count methods for bacteria in distributed drinking water. Can. J. Microbiol. 40, 830–835.Google Scholar
  4. 4.
    L. Boulos, M. Prévost, B. Barbeau, J. Coallier, and R. Desjardins (1999) Live/Dead® BacLight™: Application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods. 37, 77–86.Google Scholar
  5. 5.
    R. Ramalho, J. Cunha, P. Teixeira, and P. A. Gibbs (2001) Improved methods for the enumeration of heterotrophic bacteria in bottled mineral waters. J. Microbiol. Methods 44, 97–103.Google Scholar
  6. 6.
    J. Vollertsen, A. Jahn, J. L. Nielsen, T. Hvitved-Jacobsen, and P. H. Nielsen (2001) Comparison of methods for determination of microbial biomass in wastewater. Water Res. 35, 1649–1658.Google Scholar
  7. 7.
    G. L. Pettipher, R. J. Fulford, and L. A. Mabbitt (1983) Collaborative trial of the direct epifluorescent filter technique (DEFT), a rapid method for counting bacteria in milk. J. Appl. Bacteriol. 54, 177–182.Google Scholar
  8. 8.
    U. M. Rodrigues and R. G. Kroll (1986) Use of the direct epifluorescent filter technique for the enumeration of yeast. J. Appl. Bacteriol. 61, 139–144.Google Scholar
  9. 9.
    J. T. Holah, R. P. Betts, and R. H. Thorpe (1988) The use of direct epifluorescent microscopy (DEM) and the direct epifluorescent filter technique (DEFT) to asses microbial population on food contact surfaces. J. Appl. Bacteriol. 65, 215–221.Google Scholar
  10. 10.
    G. Duffy and J. J. Sheridan (1998) Viability staining in a direct count rapid method for the determination of total viable counts on processed meats. J. Microbiol. Methods 31, 167–174.Google Scholar
  11. 11.
    J. Couto and T. Hogg (1999) Evaluation of a commercial fluorochromic system for the rapid detection and estimation of wine lactic acid bacteria by DEFT. Lett. Appl. Microbiol. 28, 23–26.Google Scholar
  12. 12.
    M. Hermida, M. Taboada, S. Menéndez, and J. L. Rodríguez-Otero (2000) Semiautomated direct epifluorescent filter technique for total bacterial count in raw milk. J. AOAC Int. 83, 1345–1348.Google Scholar
  13. 13.
    V. K. Bhupathiraju, M. Hernández, P. Krauter, and L. Alvarez-Cohen (1999) A new direct microscopy based method for evaluating in-situ bioremediation. J. Hazard. Mater. 67, 299–312.Google Scholar
  14. 14.
    M. Kittelmann, W. W. Stamm, H. Follmann, and H. G. Trüper (1989) Isolation and classification of acetic acid bacteria from high percentage vinegar fermentations. Appl. Microbiol. Biotechnol. 30, 47–52.Google Scholar
  15. 15.
    M. Sievers, S. Sellmer, and M. Teuber (1992) The microbiology and taxonomy of Acetobacter europaeus sp. nov., a main component of industrial vinegar fermentors in central Europe. Syst. Appl. Microbiol. 15, 610–616.Google Scholar
  16. 16.
    S. J. Sokollek and W. P. Hammes (1997) Description of a starter culture preparation for vinegar fermentation. Syst. Appl. Microbiol. 20, 481–491.Google Scholar
  17. 17.
    S. J. Sokollek, C. Hertel, W. P. Hammes (1998) Cultivation and preservation of vinegar bacteria. J. Biotechnol. 60, 195–206.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. M. Mesa
    • 1
  • M. Macías
    • 1
  • D. Cantero
    • 1
  • F. Barja
    • 2
    • 2
  1. 1.Department of Chemical Engineering, Faculty of SciencesUniversity of CádizPuerto Real, CádizSpain
  2. 2.Laboratory of Bioenergetics and MicrobiologyUniversity of Geneva, Uni Bastions

Personalised recommendations