Journal of Applied Electrochemistry

, Volume 33, Issue 8, pp 655–663 | Cite as

Electrosynthesis of hydrogen peroxide in acidic solutions by mediated oxygen reduction in a three-phase (aqueous/organic/gaseous) system Part I: Emulsion structure, electrode kinetics and batch electrolysis

Article

Abstract

The mediated electrosynthesis of H2O2 in acidic solutions (pH 0.9–3.0) was investigated in a three-phase, aqueous/organic/gaseous system using 2-ethyl-9,10-anthraquinone (EtAQ) as mediator (redox catalyst). The main hydrogen peroxide producing route is the in situ mediating cycle: EtAQ electroreduction–homogeneous oxidation of anthrahydroquinone (EtAQH2). The organic phase was composed of tributylphosphate solvent (TBP) with 0.2 M tetrabutylammonium perchlorate (TBAP) supporting electrolyte, 0.06 M tricaprylmethylammonium chloride (A336) surface active agent, and 0.1–0.2 M EtAQ mediator. Part I of this two part work deals with the physico-chemical characteristics of the emulsion electrolyte (e.g., ionic conductivity, emulsion type, H2O2 partition between the aqueous and organic phases), and kinetic aspects (both electrode and homogenous) of the mediation cycle. Furthermore, batch electrosynthesis experiments are presented employing reticulated vitreous carbon cathodes (specific surface area 1800 m2 m−3) operated at superficial current densities of 500–800 A m−2. During 10 h batch electrolysis involving the emulsion mediated system with O2 purge at 0.1 MPa pressure, H2O2 concentrations in the range 0.53–0.61 M were obtained in 0.1 M H2SO4 (pH 0.9) and 2 M Na2SO4(acidified to pH3). The corresponding apparent current efficiencies were from 46 to 68%. Part II of the present work describes investigations using flow-by fixed-bed electrochemical cells with co-current upward three-phase flow.

electrosynthesis hydrogen peroxide mediated reduction redox catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.W. Oloman, ‘Electrochemical Processing for the Pulp and Paper Industry’, The Electrochemical Consultancy, Romsey, UK (1996).Google Scholar
  2. 2.
    J.R. Anderson and B. Amini, in C.W. Dence and D.W. Reeve, (Eds), ‘Pulp Bleaching: Principles and Practice’ (TAPPI Press, Atlanta, 1996), pp. 117–133.Google Scholar
  3. 3.
    E.L. Gyenge and C.W. Oloman, J. Appl. Electrochem. 31 (2001) 233.Google Scholar
  4. 4.
    Z. Qiang, J-H. Chang and C-P. Huang, Water Res. 36 (2002) 85.Google Scholar
  5. 5.
    O. El Mouahid, C. Coutanceau, E.M. Belgsir, P. Crouigneau, J.M. Leger and C. Lamy, J. Electroanal. Chem. 426 (1997) 117.Google Scholar
  6. 6.
    C. Degrand, J. Electroanal. Chem. 169 (1984) 259.Google Scholar
  7. 7.
    M.S. Wrighton, Science 231 (1986) 32.Google Scholar
  8. 8.
    B. Keita and L. Nadjo, J. Electronal. Chem. 145 (1983) 431.Google Scholar
  9. 9.
    P. Tissot and A. Huissoud, Electrochim. Acta 41 (1996) 2451.Google Scholar
  10. 10.
    A. Huissoud and P. Tissot, J. Appl. Electrochem. 28 (1998) 653.Google Scholar
  11. 11.
    E.L. Gyenge, ‘Phase-transfer mediated electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes’, PhD dissertation, The University of British Columbia, Vancouver, Canada (2001).Google Scholar
  12. 12.
    A. Paren and T. Tsujino, Japan Tappi J. 52 (1998) 630.Google Scholar
  13. 13.
    R.F. Knarr, M. Velasco, S. Lynn and C.W. Tobias, J. Electrochem. Soc. 139 (1992) 948.Google Scholar
  14. 14.
    A. Huissoud and P. Tissot, J. Appl. Electrochem. 29 (1999) 11.Google Scholar
  15. 15.
    A. Huissoud and P. Tissot, J. Appl. Electrochem. 29 (1999) 17.Google Scholar
  16. 16.
    M. Nozaki, Japan Tappi J. 52 (1998) 616.Google Scholar
  17. 17.
    I. Mathur and R. Dawe, Tappi J. 82 (1999) 157.Google Scholar
  18. 18.
    R. Dworak, H. Feess and H. Wendt, AIChE Symp. Ser. No. 185 75 (1979) 38.Google Scholar
  19. 19.
    H. Feess and H. Wendt, J. Chem. Tech. Biotechnol. 30 (1980) 297.Google Scholar
  20. 20.
    H. Feess and H. Wendt, Ber. Buns. Ges. Phys. Chem. 85 (1981) 914.Google Scholar
  21. 21.
    J.A. Dean (Ed.), ‘Lange's Handbook of Chemistry’ (McGraw-Hill, New York, 1992).Google Scholar
  22. 22.
    S.H. Maron and C.F. Prutton, ‘Principles of Physical Chemistry’ (Macmillan, London, 4th edn, 1971).Google Scholar
  23. 23.
    http://www.chevronphillips.matweb.com/brochures/mxdiethybenbro. pdf.Google Scholar
  24. 24.
    http://www.inchem.org/documents/ehc/ehc/ehc112.htm.Google Scholar
  25. 25.
    S. Budavari (Ed.), ‘Merck Index’ (Merck & Co., Rahway, NJ, 11th edn, 1989).Google Scholar
  26. 26.
    L. Sigrist, O. Dossenbach and N. Ibl, J. Appl. Electrochem. 10 (1980) 223.Google Scholar
  27. 27.
    P. Becher, ‘Emulsions: Theory and Practice’ (Reinhold, New York, 1957).Google Scholar
  28. 28.
    J.F. Rusling, in B.E. Conway, J.O'M. Bockris and R.E. White (Eds), ‘Modern Aspects of Electrochemistry’, No. 26 (Plenum, New York, 1994).Google Scholar
  29. 29.
    A. Babaei, P.A. Connor and J.A. McQuillan, J. Chem. Ed. 74 (1997) 1200.Google Scholar
  30. 30.
    K. Pekmez, M. Can and A. Yildiz, Electrochim. Acta 38 (1993) 607.Google Scholar
  31. 31.
    V.J. Jennings, T.E. Forster and J. Williams, Analyst 95 (1970) 718.Google Scholar
  32. 32.
    C. Russel and W. Jaenicke, J. Electroanal. Chem. 180 (1984) 205.Google Scholar
  33. 33.
    J. Posdorfer, M. Olbrich-Stock and R.N. Schindler, Z. Phys. Chem. 171 (1991) 33.Google Scholar
  34. 34.
    ‘Reticulated Vitreous Carbon’, Technical literature, ERG Materials and Aerospace Co., Oakland (1996).Google Scholar
  35. 35.
    E.R. Brown and J.R. Sandifer, in B.W. Rossiter and J.F. Hamilton (Eds), ‘Physical Methods of Chemistry’, Vol. II, ‘Electrochemical Methods’ (J. Wiley & Sons, New York, 2nd edn, 1986). pp. 273–432.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations