Advertisement

Cellular and Molecular Neurobiology

, Volume 23, Issue 4–5, pp 597–616 | Cite as

Functional Organization of Brain Pathways Subserving the Baroreceptor Reflex: Studies in Conscious Animals Using Immediate Early Gene Expression

  • Roger A. L. Dampney
  • Jaimie W. Polson
  • Patrick D. Potts
  • Yoshitaka Hirooka
  • Jouji Horiuchi
Article

Abstract

1. This paper reviews studies carried out in our laboratory in which we have used the c-fos functional mapping method, in combination with other methods, to determine the functional organization of central baroreceptor pathways as they operate in the conscious rabbit.

2. First, we showed that periods of induced hypertension or hypotension each result in a specific and reproducible pattern of activation of neurons in the brainstem and forebrain. In particular, hypotension (but not hypertension) results in the activation of catecholamine neurons in the medulla and pons and vasopressin-synthesizing neurons in the hypothalamus.

3. The activation of medullary cell groups in response to induced hypertension or hypotension in the conscious rabbit is almost entirely dependent on inputs from arterial baroreceptors, while the activation of hypothalamic vasopressin-synthesising neurons in response to hypotension is largely dependent on baroreceptors, although an increase in circulating angiotensin also appears to contribute.

4. Discrete groups of neurons in the rostral ventrolateral medulla (RVLM) and A5 area in the pons are the major groups of spinally projecting neurons activated by baroreceptor unloading. In contrast, spinally projecting neurons in the paraventricular nucleus in the hypothalamus appear to be largely unaffected by baroreceptor signals.

5. Direct afferent inputs to RVLM neurons in response to increases or decreases in arterial pressure originate primarily from other medullary nuclei, particularly neurons located in the caudal and intermediate levels of the ventrolateral medulla (CVLM and IVLM), as well as in the nucleus tractus solitarius (NTS).

6. There is also a direct projection from barosensory neurons in the NTS to the CVLM/IVLM region, which is activated by baroreceptor inputs.

7. Collectively, the results of our studies in conscious animals indicate that baroreceptor signals reach all levels of the brain. With regard to the baroreceptor reflex control of sympathetic activity, our studies are consistent with previous studies in anesthetized animals, but in addition reveal other previously unrecognized pathways that also contribute to this reflex regulation.

central cardiovascular neurons ventrolateral medulla nucleus tractus solitarius hypothalamus c-fos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Agarwal, S. K., and Calaresu, F. R. (1991). Monosynaptic connection from caudal to rostral ventrolateral medulla in the baroreceptor reflex pathway. Brain Res. 555:70–74.PubMedGoogle Scholar
  2. Aicher, S. A., Kurucz, O. S., Reis, D. J., and Milner, T. A. (1995). Nucleus tractus solitarius efferent terminals synapse on neurons in the caudal ventrolateral medulla that project to the rostral ventrolateral medulla. Brain Res. 693:51–63.PubMedGoogle Scholar
  3. Anderson, J. W., Smith, P. M., and Ferguson, A. V. (2001). Subfornical organ neurons projecting to paraventricular nucleus: Whole-cell properties. Brain Res. 921:78–85.PubMedGoogle Scholar
  4. Badoer, E. (1998). Neurons in the hypothalamic paraventricular nucleus that project to the rostral ventrolateral medulla are not activated by hypotension. Brain Res. 801:224–227.PubMedGoogle Scholar
  5. Badoer, E., McKinley, M. J., Oldfield, B. J., and McAllen, R. M. (1994). Localization of barosensitive neurons in the caudal ventrolateral medulla which project to the rostral ventrolateral medulla. Brain Res. 657: 258–268.PubMedGoogle Scholar
  6. Blessing, W. W. (1990). Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections. Neuroscience 37:171–185.PubMedGoogle Scholar
  7. Blessing, W. W., Hedger, S. C., Joh, T. H., and Willoughby, J. O. (1987). Neurons in the area postrema are the only catecholamine-synthesizing cells in the medulla or pons with projections to the rostral ventrolateral medulla (C1-area) in the rabbit. Brain Res. 419: 336–340.PubMedGoogle Scholar
  8. Blessing, W. W., Howe, P. R. C., Joh, T. H., Oliver, J. R., and Willoughby, J. O. (1986). Distribution of tyrosine hydroxylase and neuropeptide Y-like immunoreactive neurones in rabbit medulla oblongata, with attention to colocalization studies, presumptive adrenaline-synthesizing perikarya, and vagal preganglionic cells. J. Comp. Neurol. 248:285–300.PubMedGoogle Scholar
  9. Byrum, C. E., and Guyenet, P. G. (1987). Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J. Comp. Neurol. 261:529–542.PubMedGoogle Scholar
  10. Chan, R. K., Jarvina, E. V., and Sawchenko, P. E. (2000). Effects of selective sinoaortic denervations on phenylephrine-induced activational responses in the nucleus of the solitary tract. Neuroscience 101:165–178.PubMedGoogle Scholar
  11. Chan, R. K., and Sawchenko, P. E. (1994). Spatially and temporally differentiated patterns of c-fos expression in brainstem catecholaminergic cell groups induced by cardiovascular challenges in the rat. J. Comp. Neurol. 348:433–460.PubMedGoogle Scholar
  12. Chan, R. K., and Sawchenko, P. E. (1998). Organization and transmitter specificity of medullary neurons activated by sustained hypertension: Implications for understanding baroreceptor reflex circuitry. J. Neurosci. 18:371–387.PubMedGoogle Scholar
  13. Coote, J. H., and Lewis, D. I. (1995). Bulbospinal catecholamine neurones and sympathetic pattern generation. J. Physiol. Pharmacol. 46:259–271.PubMedGoogle Scholar
  14. Cravo, S. L., Morrison, S. F., and Reis, D. J. (1991). Differentiation of two cardiovascular regions within caudal ventrolateral medulla. Am. J. Physiol. 261:R985-R994.PubMedGoogle Scholar
  15. Dampney, R. A. L. (1994). Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74:323–364.PubMedGoogle Scholar
  16. Dampney, R. A. L., Hirooka, Y., Li, Y.-W., Potts, P. D., and Polson, J. W. (1995). Use of c-fos functional mapping to identify central cardiovascular pathways: Advantages and limitations. Clin. Exp. Hypertens. 17:197–208.PubMedGoogle Scholar
  17. Deuchars, S. A., Spyer, K. M., and Gilbey, M. P. (1997). Stimulation within the rostral ventrolateral medulla can evoke monosynaptic GABAergic IPSPs in sympathetic preganglionic neurons in vitro. J. Neurophysiol. 77:229–235.PubMedGoogle Scholar
  18. Dragunow, M., and Faull, R. (1989). The use of c-fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Methods 29:261–265.PubMedGoogle Scholar
  19. Gieroba, Z. Y., Li, Y.-W., and Blessing, W. W. (1992). Characteristics of caudal ventrolateral medullary neurons antidromically activated from rostral ventrolateral medulla in the rabbit. Brain Res. 582:196–207.PubMedGoogle Scholar
  20. Graham, J. C., Hoffman, G. E., and Sved A. F. (1995). c-Fos expression in brain in response to hypotension and hypertension in conscious rats. J. Auton. Nerv. Syst. 55:92–104.PubMedGoogle Scholar
  21. Guyenet, P. G. (1990). Role of the ventral medulla oblongata in blood pressure regulation. In Loewy, A. D., and Spyer, K. M. (eds.), Central Regulation of Autonomic Functions, Oxford University Press, New York, pp. 145–167.Google Scholar
  22. Hirooka, Y., Polson, J. W., Potts, P. D., and Dampney, R. A. L. (1997). Hypoxia-induced Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla. Neuroscience 80:1209–1224.PubMedGoogle Scholar
  23. Horiuchi, J., Potts, P. D., Polson, J. W., and Dampney, R. A. L. (1999). Distribution of neurons projecting to the rostral ventrolateral medullary pressor region that are activated by sustained hypotension. Neuroscience 89:1319–1329.PubMedGoogle Scholar
  24. Inokuchi, H., Yoshimura, M., Polosa, C., and Nishi, S. (1992). Adrenergic receptors (alpha1 and alpha2) modulate different potassium conductances in sympathetic preganglionic neurons. Can. J. Physiol. Pharmacol. 70:S92-S97.PubMedGoogle Scholar
  25. Korner, P. I. (1980). Central nervous control of autonomic cardiovascular function. In Field, J. W. (ed.), Handbook of Physiology—Cardiovascular System 1, American Physiological Society, Washington, DC, pp. 691–739.Google Scholar
  26. Lantéri-Minet, M., Weil-Fugazza, J., de Pommery, J. and Menétrey, D. (1994). Hindbrain structures involved in pain processing as revealed by the expression of c-Fos and other immediate early gene proteins. Neuroscience 58:287–298.PubMedGoogle Scholar
  27. Lewis, D. I., and Coote, J. H. (1996). Baroreceptor-induced inhibition of sympathetic neurons by GABA acting at a spinal site. Am. J. Physiol. 270:H1885-H1892.PubMedGoogle Scholar
  28. Li, Y.-W., and Dampney, R. A. L. (1994). Expression of Fos-like protein in brain following sustained hypertension and hypotension in conscious rabbits. Neuroscience 61:613–634.PubMedGoogle Scholar
  29. Li, Y.-W., Gieroba, Z. J., McAllen, R. M., and Blessing, W. W. (1991). Neurons in rabbit caudal ventrolateral medulla inhibit bulbospinal barosensitive neurons in rostral medulla. Am. J. Physiol. 261:R44-R51.PubMedGoogle Scholar
  30. Loewy, A. D. (1990). Central autonomic pathways. In Loewy, A. D., and Spyer, K. M. (eds.), Central Regulation of Autonomic Functions, Oxford University Press, New York, pp. 88–103.Google Scholar
  31. Maiorov, D. N., Malpas, S. C., and Head, G. A. (2000). Influence of pontine A5 region on renal sympathetic nerve activity in conscious rabbits. Am. J. Physiol. 278:R311-R319.Google Scholar
  32. Matsumoto, M., Takayama, K., and Miura, M. (1994). Distribution of glutamate-and GABA-immunoreactive neurons projecting to the vasomotor center of the intermediolateral nucleus of the lower thoracic cord of Wistar rats: A double-labeling study. Neurosci. Lett. 174:165–168.PubMedGoogle Scholar
  33. Meeley, M. P., Ruggiero, D. A., Ishitsuka, T., and Reis, D. J. (1985). Intrinsic gamma-aminobutyric acid neurons in the nucleus of the solitary tract and the rostral ventrolateral medulla of the rat: An immunocytochemical and biochemical study. Neurosci. Lett. 58:83–89.PubMedGoogle Scholar
  34. Minson, J. B., Llewellyn-Smith, I. J., Chalmers, J. P., Pilowsky, P. M., and Arnolda, L. F. (1997). c-Fos identifies GABA-synthesizing barosensitive neurons in caudal ventrolateral medulla. Neuroreport 8:3015–3021.PubMedGoogle Scholar
  35. Miyazaki, T., Kobayashi, H., and Tosaka, T. (1988). Presynaptic inhibition by noradrenaline of the EPSC evoked in neonatal rat sympathetic preganglionic neurons. Brain Res. 790:170–177.Google Scholar
  36. Morgan, J. I., and Curran, T. (1991). Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Ann. Rev. Neurosci. 14:421–451.PubMedGoogle Scholar
  37. Numao, Y., Saito, M., Terui, N., and Kumada, M. (1983) Physiological and pharmacological properties of the three subsystems constituting the aortic nerve–renal sympathetic reflex in rabbits. J. Auton. Nerv. Syst. 9:361–380.PubMedGoogle Scholar
  38. Oldfield, B. J., Badoer, E., Hards, D. K., and McKinley, M. J. (1994). Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience 60:255–262.PubMedGoogle Scholar
  39. Papas, S., and Ferguson, A. V. (1991). Electrophysiological evidence of baroreceptor input to area postrema. Am. J. Physiol. 261:R9-R13.PubMedGoogle Scholar
  40. Polson, J. W., Mrljak, S., Potts, P. D., and Dampney, R. A. L. (2002). Fos expression in spinally projecting neurons after hypotension in the conscious rabbit. Auton. Neurosci. 100:10–20.PubMedGoogle Scholar
  41. Polson, J. W., Potts, P. D., Li, Y.-W., and Dampney, R. A. L. (1995). Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla after sustained hypertension in conscious rabbits. Neuroscience 67:107–123.PubMedGoogle Scholar
  42. Potts, P. D., Hirooka, Y., and Dampney R. A. L. (1999). Activation of brain neurons by circulating angiotensin II: direct effects and baroreceptor-mediated secondary effects. Neuroscience 90:581–594.PubMedGoogle Scholar
  43. Potts, P. D., Polson, J. W., Hirooka, Y., and Dampney, R. A. L. (1997). Effects of sinoaortic denervation on Fos expression evoked by hypertension and hypotension in conscious rabbits. Neuroscience 77:503–520.PubMedGoogle Scholar
  44. Quail, A. W., Woods, R. L., and Korner, P. I. (1987). Cardiac and arterial baroreceptor influences in release of vasopressin and renin during hemorrhage. Am. J. Physiol. 252:H1120-H1126.PubMedGoogle Scholar
  45. Reid, I. A., Morris, B. J., and Ganong, W. F. (1978). The renin–angiotensin system. Ann. Rev. Physiol. 40:377–410.Google Scholar
  46. Reis, D. J., Ruggiero, D. A., and Morrison, S. F. (1989). The C1 area of the rostral ventrolateral medulla oblongata. A critical brainstem region for control of resting and reflex integration of arterial pressure. Am. J. Hypertens. 2:363S-374S.PubMedGoogle Scholar
  47. Schreihofer, A. M., Hoffman, G. E., and Sved A. F. (1997). The kidneys stimulate vasopressin release during hemorrhage in rats with chronic NTS lesions. Am. J. Physiol. 272:R1540-R1551.PubMedGoogle Scholar
  48. Schreihofer, A. M., Stricker, E. M., and Sved, A. F. (1994). Chronic nucleus tractus solitarius lesions do not prevent hypovolemia-induced vasopressin secretion in rats. Am. J. Physiol. 267:R965-R973.PubMedGoogle Scholar
  49. Shafton, A. D., Ryan, A., and Badoer, E. (1998). Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res. 801:239–243.PubMedGoogle Scholar
  50. Share, L. (1974). Blood pressure, blood volume and the release of vasopressin. In Greep, R. O., and Astwood, E. B. (eds.), Handbook of Physiology. Endocrinology, Vol. IV, Part 1, American Physiology Society, Washington, DC, pp. 243–255.Google Scholar
  51. Somogyi, P., Minson, J. B., Morilak, D., Llewellyn-Smith, I., McIlhinney, J. R., and Chalmers, J. (1989). Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control. Brain Res. 496:401–407.PubMedGoogle Scholar
  52. Spyer, K. M. (1990). The central nervous organization of reflex circulatory control. In Loewy, A. D., and Spyer, K. M. (eds.), Central Regulation of Autonomic Functions, Oxford University Press, New York, pp. 168–188.Google Scholar
  53. Strack, A. M., Sawyer, W. B., Hughes, J. H., Platt, K. B., and Loewy, A. D. (1989). A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res. 491:156–162.PubMedGoogle Scholar
  54. Sun, M. K., and Guyenet, P. G. (1987) Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am. J. Physiol. 252:R699-R709.PubMedGoogle Scholar
  55. Sved, A. F., Mancini, D. L., Graham, J. C., Schreihofer, A. M., and Hoffman, G. E. (1994). PNMT-containing neurons of the C1 cell group express c-fos in response to changes in baroreceptor input. Am. J. Physiol. 266:R361-R367.PubMedGoogle Scholar
  56. Swanson, L. W., and Kuypers, H. G. (1980) The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194:555–570.PubMedGoogle Scholar
  57. Taniguchi, Y., Yoshida, M., Ishikawa, K., Suzuki, M., and Kurosumi, K. (1988). The distribution of vasopressin-or oxytocin-neurons projecting to the posterior pituitary as revealed by a combination of retrograde transport of horseradish peroxidase and immunohistochemistry. Arch. Histol. Cytol. 51:83–89.PubMedGoogle Scholar
  58. Terui, N., Masuda, N., Saeki, Y., and Kumada, M. (1990). Activity of barosensitive neurons in the caudal ventrolateral medulla that send axonal projections to the rostral ventrolateral medulla in rabbits. Neurosci. Lett. 118:211–214.PubMedGoogle Scholar
  59. Undesser, K. P., Jing-Yun, P., Lynn, M. P., and Bishop, V. S. (1985). Baroreflex control of sympathetic nerve activity after elevations of pressure in conscious rabbits. Am. J. Physiol. 248:H827-H834.PubMedGoogle Scholar
  60. Wallach, J. H., and Loewy, A. S. (1980). Projections of the aortic nerve to the nucleus tractus solitarius in the rabbit. Brain Res. 188:247–251.PubMedGoogle Scholar
  61. Weinstock, M., Korner, P. I., Head, G. A., and Dorward, P. K. (1988). Differentiation of cardiac baroreflex properties by cuff and drug methods in two rabbit strains. Am. J. Physiol. 255:R654-R664.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Roger A. L. Dampney
    • 1
  • Jaimie W. Polson
    • 1
  • Patrick D. Potts
    • 1
  • Yoshitaka Hirooka
    • 1
  • Jouji Horiuchi
    • 1
  1. 1.Department of Physiology and Institute for Biomedical ResearchUniversity of SydneySydneyAustralia

Personalised recommendations