Plant Molecular Biology

, Volume 52, Issue 4, pp 831–841

Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana)

  • Akira Kanno
  • Hiroshi Saeki
  • Toshiaki Kameya
  • Heinz Saedler
  • Günter Theissen
Article

Abstract

In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.

ABC model APETALA3 DEFICIENS flower development flower evolution GLOBOSA Liliaceae MADS-box gene PISTILLATA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, V.A., Gustaffson, M.H.G. and Di Laurenzio, L. 1998. Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal. In: D.E. Soltis, P.S. Soltis and J.J. Doyle (Eds.) Molecular Systematics of Plants II, Kluwer Academic Publishers, Boston, MA/Dordrecht, Netherlands, pp. 349-374.Google Scholar
  2. Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. 2000. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell 5: 569-579.Google Scholar
  3. Baum, D.A. 1998. The evolution of plant development. Curr. Opin. Plant Biol. 1: 79-86.Google Scholar
  4. Baum, D.A. and Whitlock, B.A. 1999. Genetic clues to petal evolution. Curr. Biol. 9: R525-R527.Google Scholar
  5. Chung, Y.Y., Kim, S.R., Kang, H.G., Noh, Y.S., Park, M.C., Finkel, D. and An, G. 1995. Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci. 109: 45-56.Google Scholar
  6. Coen, E.S. and Meyerowitz, E.M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.Google Scholar
  7. Dahlgren, R.M.T., Clifford, H.T. and Yeo, P.F. 1985. In: Dahlgren, R.M.T., Clifford, H.T., Yeo, P.F. (Eds.) The Families of the Monocotyledons, Springer-Verlag, Berlin/Heidelberg, pp. 65.Google Scholar
  8. Egea-Cortines, M., Saedler, H. and Sommer, H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.Google Scholar
  9. Frohman, M.A., Dush, M.K. and Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998-9002.Google Scholar
  10. Goto, K. and Meyerowitz, E.M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.Google Scholar
  11. Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.Google Scholar
  12. Jack, T., Brockman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697.Google Scholar
  13. Kang, H.G., Jeon, J.S., Lee, S. and An, G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38: 1021-1029.Google Scholar
  14. Kisaka, H., Kisaka, M. and Kameya, T. 1996. Characterization of interfamilial somatic hybrids between 5-methyltryptophanresistant (5MT-resistant) rice (Oryza sativa L.) and 5MTsensitive carrot (Daucus carota L.): expression of resistance to 5MT by somatic hybrids. Breed. Sci. 46: 221-226.Google Scholar
  15. Kramer, E.M. and Irish, V.F. 2000. Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int. J. Plant Sci. 161 (Suppl.): S29-S40.Google Scholar
  16. Kramer, E.M., Dorit, R.L. and Irish, V.F. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADSbox gene lineages. Genetics 149: 765-783.Google Scholar
  17. Krizek, B.A. and Meyerowitz, E.M. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122: 11-22.Google Scholar
  18. Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. 2000.Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41: 710-718.Google Scholar
  19. Lee, S., Jeon, J.S., Moon, Y.H. and An, G. 2000. Alteration of rice floral organ identity by ectopic expression of rice MADSbox gene. In: Proceedings of the 4th International Rice Genetics Symposium.Google Scholar
  20. Moon, Y.H., Jung, J.Y., Kang, H.G. and An, G. 1999. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol. Biol. 40: 167-177.Google Scholar
  21. Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H. and Theissen, G. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94: 2415-2420.Google Scholar
  22. Münster, T., Wingen, L.U., Faigl, W., Werth, S., Saedler, H. and Theissen, G. 2001. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 262: 1-13.Google Scholar
  23. Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acid. Res. 8: 4321-4325.Google Scholar
  24. Park, J.H., Ishikawa, Y., Yoshida, R., Kanno, A. and Kameya, T. 2003. Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol. Biol. 51: 867-875.Google Scholar
  25. Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R. and Yanofsky, M.F. 2001. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11: 182-184.Google Scholar
  26. Perrière, G. and Gouy, M. 1996. WWW-Query: an on-line retrieval system for biological sequence banks. Biochemie 78: 364-369.Google Scholar
  27. Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793-4798.Google Scholar
  28. Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  29. Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lönnig, W.E., Saedler, H. and Sommer, H. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.Google Scholar
  30. Soltis, P.S., Soltis, D.E. and Chase, M.W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402-403.Google Scholar
  31. Theissen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85.Google Scholar
  32. Theissen, G. and Saedler, H. 2001. Floral quartets. Nature 409: 469-471.Google Scholar
  33. Theissen, G., Kim, J. and Saedler, H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.Google Scholar
  34. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.U. and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.Google Scholar
  35. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids. Res. 22: 4673-4680.Google Scholar
  36. Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.Google Scholar
  37. Tzeng, T.Y. and Yang, C.H. 2001. A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol. 42: 1156-1168.Google Scholar
  38. van Tunen, A.J., Eikelboom, W. and Angenent, G.C. 1993. Floral organogenesis in Tulipa. Flow. Newsl. 16: 33-38.Google Scholar
  39. Weigel, D. and Meyerowitz, E.M. 1994. The ABCs of floral homeotic genes. Cell 78: 203-209.Google Scholar
  40. Winter, K.U., Weiser, C., Kaufmann, K., Bohne, A., Kirchner, C., Kanno, A., Saedler, H. and Theissen, G. 2002. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol. Biol. Evol. 19: 587-596.Google Scholar
  41. Zachgo, S., Silva, E.A., Motte, P., Tröbner, W., Saedler, H. and Schwarz-Sommer, Z. 1995. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121: 2861-2875.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Akira Kanno
    • 1
    • 2
  • Hiroshi Saeki
    • 2
  • Toshiaki Kameya
    • 2
  • Heinz Saedler
    • 1
  • Günter Theissen
    • 1
    • 3
  1. 1.Max-Planck-Institut für ZüchtungsforschungKölnGermany
  2. 2.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  3. 3.Lehrstuhl for GeneticsUniversity of JenaJenaGermany

Personalised recommendations