Theoretical and Mathematical Physics

, Volume 136, Issue 2, pp 1066–1076 | Cite as

Universal Models of Soliton Hierarchies

  • A. B. Shabat


We consider commutativity equations and a related new model similar to the Kadomtsev–Petviashvili equation in the Sato theory. Integration of this model equation with three independent variables is based on a generalization of the Dubrovin equations and the recently developed theory of transformations of spectral problems. We give examples of equations with a fractional-power dispersion law that can be linearized in this theory.

commutativity equations Dubrovin equations classical hierarchies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Date, M. Jimbo, M. Kajivara, and T. Miva, J.Phys.Soc.Japan, 50, 3806-3812 (1981).Google Scholar
  2. 2.
    N. H. Ibragimov and A. B. Shabat, Funct.Anal.Appl., 14, 313-315 (1981).Google Scholar
  3. 3.
    L. Martínez Alonso and A. B. Shabat, Phys.Lett.A, 229, 359-365 (2002); nlin.SI/0202008 (2002).Google Scholar
  4. 4.
    L. Martínez Alonso and A. B. Shabat, J.Nonlinear Math.Phys., 10, 229-242 (2003).Google Scholar
  5. 5.
    R. Heredero, A. B. Shabat, and V. V. Sokolov, “A new class of linearizible equations,” J.Nonlinear Math.Phys. (submitted 2003).Google Scholar
  6. 6.
    S. I. Svinolupov, Russ.Math.Surv., 40, 241-242 (1985).Google Scholar
  7. 7.
    V. E. Adler, I. T. Khabibullin, and A. B. Shabat, Theor.Math.Phys., 110, 78-90 (1997).Google Scholar
  8. 8.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russ.Math.Surv., 31, 59-146 (1976).Google Scholar
  9. 9.
    B. L. Rozdestvenskii and A. D. Sidorenko, Comput.Math.Math.Phys., 7, 1176 (1967).Google Scholar
  10. 10.
    E. Ferapontov, Phys.Lett.A, 158, 112-118 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. B. Shabat
    • 1
  1. 1.Landau Institute for Theoretical Physics, RASMoscowRussia

Personalised recommendations