Advertisement

Plant Molecular Biology

, Volume 52, Issue 4, pp 715–727 | Cite as

The Arabidopsis SKP1-like genes present a spectrum of expression profiles

  • Katia Marrocco
  • Alain Lecureuil
  • Pierre Nicolas
  • Philippe GuercheEmail author
Article

Abstract

The yeast Skp1 protein is a component of the SCF complex, an E3 enzyme involved in the specific protein degradation pathway via ubiquitination. Skp1 binds to F-box proteins to trigger specific recognition of proteins targeted for degradation. SKP1-like genes have been found in a variety of eukaryotes including yeast, man, Caenorhabditis elegans and Arabidopsis thaliana. The Arabidopsis genome contains 20 SKP1-like genes called ASK (for Arabidopsis SKP1-like), among which only ASK1 has been characterized in detail. The analysis of the expression pattern of the ASK genes in Arabidopsis should provide key information for the understanding of the biological role of this family in protein degradation and in different cellular mechanisms. In this paper, we describe the expression profiles of 19 ASK promoter-GUS fusions in stable transformants of Arabidopsis, with a special emphasis on floral organ development. Four ASK promoters did not show any detectable expression in either inflorescences or seedlings. Our results on the ASK1 expression profile are consistent with previous reports. Several ASK promoters show clear tissue-specific expression (for instance in the connective of anthers or in the embryo). We also found that almost half (9/19) of ASK promoters direct a post-meiotic expression in the male gametophyte. Tight regulation of the expression of this gene family indicates a crucial role of the ubiquitin degradation pathway during development, particularly during male gametophyte development.

Arabidopsis thaliana expression profiles GUS SKP1-like 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignement search tool. J Mol Biol 215: 403-410.Google Scholar
  2. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.Google Scholar
  3. Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W. and Elledge, S.J. 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 56: 263-274.Google Scholar
  4. Bailey, T.L. and Elkan, C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park, CA, pp. 28-36.Google Scholar
  5. Bate, N. and Twell, D. 1998. Functional architecture of a late pollen promoter: pollen specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869.Google Scholar
  6. Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris (III) 316: 1194-1199.Google Scholar
  7. Brunel, D., Froger, N. and Pelletier, G. 1999. Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome 42: 387-402.Google Scholar
  8. Callis, J. and Vierstra, R.D. 2000. Protein degradation signaling. Curr. Opin. Plant Biol. 3: 381-386.Google Scholar
  9. Cartea, M.E., Migdal, M., Galle, A.M., Pelletier, G. and Guerche, P. 1998. Comparision of sense and antisense methodologies for modifying the fatty acid composition of Arabidopsis thaliana oilseed. Plant Sci. 136: 181-194.Google Scholar
  10. Christensen, C.A., King, E.J., Jordan, J.R. and Dews, G.N. 1997. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex. Plant. Reprod. 10: 49-64.Google Scholar
  11. Ciechanover, A., Orian, A. and Schwartz, A.L. 2000. Ubiquitinmediated proteolysis: biological regulation via destruction. Bioessays 22: 442-451.Google Scholar
  12. Connelly, C. and Hieter, P. 1996. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86: 275-285.Google Scholar
  13. Dieterle, M., Zhou, Y.-C., Schäfer, E., Funk, M. and Kretsch, T. 2001. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15: 939-944.Google Scholar
  14. Drouaud, J., Marrocco, K., Ridel, C., Pelletier, G. and Guerche, P. 2000. A Brassica napus skp1-like gene promoter drives GUS expression in Arabidopsis thaliana male and female gametophytes. Sex. Plant Reprod. 13: 29-35.Google Scholar
  15. Estelle, M.A. and Somerville, C.R. 1987. Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol. Gen. Genet. 206: 200-206.Google Scholar
  16. Eyal, Y., Curie, C. and McCormick, S. 1995. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 7: 373-384.Google Scholar
  17. Fourgoux-Nicol, A., Drouaud, J., Haouazine, N., Pelletier, G. and Guerche, P. 1999. Isolation of rapeseed genes expressed early and specifically during development of the male gametophyte. Plant Mol. Biol. 40: 857-872.Google Scholar
  18. Gagne, J.M., Downes, B.P., Shiu, S.-H., Durski, A.M. and Vierstra, R.D. 2002. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA 99: 11519-11524.Google Scholar
  19. Gray, W.M., Del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L. Yang, M., Ma, H. and Estelle, M. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678-1691.Google Scholar
  20. Herschko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425-479.Google Scholar
  21. Mercier, R., Vezon, D., Bullier, E., Motamayor, J.C., Sellier, A., Lefevre, F., Pelletier, G. and Horlow, C. 2001. Switch (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev. 15: 1859-1871.Google Scholar
  22. Nacry, P., Camilleri, C., Courtial, B., Caboche, M. and Bouchez, D. 1998. Major chromosomal rearrangement induced by T-DNA transformation in Arabidopsis. Genetics 149: 641-650.Google Scholar
  23. Patton, E.E., Willems, A.R. and Tyers, M. 1998. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet. 14: 236-243.Google Scholar
  24. Piechulla, B., Merforth, N. and Rudolph, B. 1998. Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol. Biol. 38: 655-662.Google Scholar
  25. Thoma, S., Hecht, U., Kippers, A., Botella, J., de Vries, S. and Sommerville, C. 1994. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 105: 35-45.Google Scholar
  26. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.Google Scholar
  27. Twell, D. 2001. The developmental biology of pollen. In: S.D. O'Neill and J.A. Roberts (Eds.), Plant Reproduction, Sheffield Academic Press, Sheffield, UK, pp. 86-153.Google Scholar
  28. Twell, D., Yamaguchi, J., Wing, R.A., Ushiba, J. and McComick, S. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shares regulatory elements. Genes Dev. 5: 496-507.Google Scholar
  29. Tyers, M. and Jorgensen, P. 2000. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10: 54-64.Google Scholar
  30. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D. and Xie, D. 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919-1935.Google Scholar
  31. Yamanaka, A., Yada, M., Imaki, H., Koga, M., Oshima, Y. and Nakayama, K.-I. 2002. Multiple Skp1-related proteins in Caenorhabditis elegans: diverse patterns of interaction with cullins and F-box proteins. Curr. Biol. 12: 267-275.Google Scholar
  32. Yang, M., Hu, Y., Lodhi, M., McCombie, W.R. and Ma, H. 1999. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA 96: 11416-11421.Google Scholar
  33. Zhang, H., Kobayashi, R., Galaktionov, K. and Beach, D. 1995. p19Skp1 and p45Skp2 are essential elements of the cyclin ACDK2 S phase kinase. Cell 82: 915-925.Google Scholar
  34. Zhao, D.H., Yang, M., Solava, J. and Ma, H. 1999 The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev. Genet. 25: 209-223.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Katia Marrocco
    • 1
  • Alain Lecureuil
    • 1
  • Pierre Nicolas
    • 1
  • Philippe Guerche
    • 1
    Email author
  1. 1.Station de Génétique et d'Amélioration des PlantesInstitut National de la Recherche AgronomiqueVersailles cedexFrance

Personalised recommendations