Journal of Near-Death Studies

, Volume 16, Issue 1, pp 5–26 | Cite as

The Ketamine Model of the Near-Death Experience: A Central Role for the N-Methyl-D-Aspartate Receptor

  • Karl L. R. Jansen


Near-death experiences (NDEs) can be reproduced by ketamine via blockade of receptors in the brain for the neurotransmitter glutamate, the N-methyl-D-aspartate (NMDA) receptors. Conditions that precipitate NDEs, such as hypoxia, ischemia, hypoglycemia, and temporal lobe epilepsy, have been shown to release a flood of glutamate, overactivating NMDA receptors and resulting in neurotoxicity. Ketamine prevents this neurotoxicity. There are substances in the brain that bind to the same receptor site as ketamine. Conditions that trigger a glutamate flood may also trigger a flood of neuroprotective agents that bind to NMDA receptors to protect cells, leading to an altered state of consciousness like that produced by ketamine.


Ischemia Glutamate Ketamine NMDA Receptor Hypoglycemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Psychiatric Association (1994).Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  2. Amiot, J. F., Bouju, P. and Palacci, J. H. (1985). Effect of naloxone on loss of consciousness induced by i.v. ketamine [Letter].British Journal of Anaesthesia, 57, 930.Google Scholar
  3. Anis, N. A., Berry, S. C., Burton, N. R. and Lodge, D. (1983). The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate.British Journal of Pharmacology, 79, 565–575.Google Scholar
  4. Barnes, D. M. (1988). NMDA receptors trigger excitement.Science, 239, 254–256.Google Scholar
  5. Ben-Ari, Y. E. (1985). Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy.Neuroscience, 14, 375–403.Google Scholar
  6. Bellville, J. W., and Forrest, W. (1968). Respiratory and subjective effects of d-and l-pentazocine.Clinical Pharmacology and Therapeutics, 9, 142–151.Google Scholar
  7. Bennett, D. R., Madsen, J. A., Jordan, W. S., and Wiser, W. C. (1973). Ketamine anesthesia in brain-damaged epileptics: Electroencephalographic and clinical observations.Neurology, 23, 449–450.Google Scholar
  8. Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during cerebral ischemia monitored by microdialysis.Journal of Neurochemistry, 43, 1369–1374.Google Scholar
  9. Blacher, R. S. (1980). The near-death experience [Letter].Journal of the American Medical Association, 244, 30.Google Scholar
  10. Carr, D. B. (1981). Endorphins at the approach of death [Letter].Lancet, 1, 390.Google Scholar
  11. Carr, D. B. (1989). On the evolving neurobiology of the near-death experience: Comments on “A neurobiological model for near-death experiences.”Journal of Near-Death Studies, 7, 251–254.Google Scholar
  12. Celesia, G. G. and Chen, R. (1974). Effects of ketamine on EEG activity in cats and monkeys.Electroencephalography and Clinical Neurophysiology, 37, 345–353.Google Scholar
  13. Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system.Neuron, 1, 623–634.Google Scholar
  14. Cline, H. T., Debski, E. A., and Constantine-Paton, M. (1987). N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes.Proceedings of the National Academy of Sciences, 84, 4342–4345.Google Scholar
  15. Coan, E. J., and Collingridge, G. L. (1987). Effects of phencyclidine, SKF 10,047 and related psychotomimetic agents on N-methyl-D-aspartate receptor mediated synaptic responses in rat hippocampal slices.British Journal of Pharmacology, 91, 547–556.Google Scholar
  16. Collier, B. B. (1972). Ketamine and the conscious mind.Anaesthesia, 27, 120–134.Google Scholar
  17. Collingridge, G. L. (1987). The role of NMDA receptors in learning and memory.Nature, 330, 604–605.Google Scholar
  18. Contreras, P. C., DiMaggio, D. A., and O'Donohue, T. L. (1987). An endogenous ligand for the sigma opioid binding site.Synapse, 1, 57–61.Google Scholar
  19. Cotman, C. W., and Monaghan, D. T. (1987). Chemistry and anatomy of excitatory amino acid systems. In H. Y. Meltzer (Ed.),Psychopharmacology: The third generation of progress (pp. 197–218). New York, NY: Raven Press.Google Scholar
  20. Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. (1987). Anatomical organization of excitatory amino acid receptors and their pathways.Trends in Neurosciences, 107, 273–279.Google Scholar
  21. Cotman, C. W., Monaghan, D. T., and Ganong, A. H. (1988). Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity.Annual Review of Neuroscience, 11, 61–80.Google Scholar
  22. Cunningham, B. L., and McKinney, P. (1983). Patient acceptance of dissociative anesthetics.Plastic and Reconstructive Surgery, 72, 22–26.Google Scholar
  23. Davies, J., and Watkins, J. C. (1983). Role of excitatory amino acid receptors in mono-and polysynaptic excitation in the cat spinal cord.Experimental Brain Research, 49, 280–290.Google Scholar
  24. Domino, E. F., Chodoff, P., and Corssen, G. (1965). Pharmacologic effects of CI-581, a new dissociative anesthetic, in man.Clinical Pharmacology and Therapeutics, 6, 279–291.Google Scholar
  25. Fagg, G. E., and Foster, A. C. (1983). Amino acid neurotransmitters and their pathways in the mammalian central nervous system.Neuroscience, 9, 701–771.Google Scholar
  26. Foster, A., and Fagg, G. E. (1987). Taking apart NMDA receptors.Nature, 329, 395.Google Scholar
  27. Gabbard, G. O., and Twemlow, S. T. (1989). Comments on “A neurobiological model for near-death experiences.”Journal of Near-Death Studies, 7, 261–264.Google Scholar
  28. Ghoneim, M. M., Hinrichs, J. V., Mewaldt, S. P., and Peterson, R. C. (1985). Ketamine: Behavioral effects of subanesthetic doses.Journal of Clinical Psychopharmacology, 5, 70–77.Google Scholar
  29. Gourie, D. M., Cherian, L., and Shankar, S. K. (1983). Seizures in cats induced by ketamine hydrochloride anaesthesia.Indian Journal of Medical Research, 77, 525–528.Google Scholar
  30. Greenamyre, J. T., Young, A. B., and Penney, J. B. (1984). Quantitative autoradiographic distribution of l-[3H]glutamate binding sites in rat central nervous system.Journal of Neuroscience, 4, 2133–2144.Google Scholar
  31. Greyson, B. (1983). The psychodynamics of near-death experiences.Journal of Nervous and Mental Disease, 171, 376–380.Google Scholar
  32. Greyson, B., and Stevenson, I. (1980). The phenomenology of near-death experiences.American Journal of Psychiatry, 137, 1193–1196.Google Scholar
  33. Grinspoon, L., and Bakalar, J. B. (1979).Psychedelic drugs reconsidered. New York, NY: Basic Books.Google Scholar
  34. Grof, S., and Halifax, J. (1977).The human encounter with death. New York, NY: Dutton.Google Scholar
  35. Headley, P. M., West, D. C., and Roe, C. (1985). Actions of ketamine and the role of N-methyl-aspartate receptors in the spinal cord: Studies on nociceptive and other neuronal responses.Neurological Neurobiology, 14, 325–335.Google Scholar
  36. Henderson, Y., and Haggard, H. W. (1927).Noxious gases and the principles of respiration influencing their action. New York, NY: American Chemical Society.Google Scholar
  37. Henriksen, S. J., Bloom, F. E., McCoy, F., Ling, N., and Guillemin, R. (1978). β-endorphin induces nonconvulsive limbic seizures.Proceedings of the National Academy of Science, 75, 5221–5225.Google Scholar
  38. Holaday, J. W., and Faden, A. L. (1978). Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock.Nature, 275, 450–451.Google Scholar
  39. Hoyer, S., and Nitsch, R. (1989). Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type.Journal of Neural Transmission, 75, 226–232.Google Scholar
  40. Jansen, K. L. R. (1989a). The near-death experience [Letter].British Journal of Psychiatry, 154, 882–883.Google Scholar
  41. Jansen, K. L. R. (1989b). Near-death experience and the NMDA receptor [Letter].British Medical Journal, 298, 1708.Google Scholar
  42. Jansen, K. L. R. (1990a). Ketamine: Can chronic use impair memory?International Journal of Addictions, 25, 133–139.Google Scholar
  43. Jansen, K. L. R. (1990b). Neuroscience and the near-death experience: Roles for the NMDA-PCP receptor, the sigma receptor and the endopsychosins.Medical Hypotheses, 31, 25–29.Google Scholar
  44. Jansen, K. L. R. (1991). Transcendental explanations and the near-death experience [Letter].Lancet, 337, 244.Google Scholar
  45. Jansen, K. L. R. (1993). Non-medical uses of ketamine.British Medical Journal, 298, 4708–4709.Google Scholar
  46. Jansen, K. L. R., and Faull, R. L. M. (1991). Excitatory amino acids, NMDA and sigma receptors: A role in schizophrenia?Behavioural and Brain Sciences, 14, 34–35.Google Scholar
  47. Jansen, K. L. R., Faull, R. L. M., and Dragunow, M. (1989). Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distribution of [3H]TCP, [3H]glycine, l-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites.Neuroscience, 32, 587–607.Google Scholar
  48. Jansen, K. L. R., Faull, R. L. M., Dragunow, M., and Leslie, R. (1991). Autoradiographic distribution of sigma receptors in human neocortex, hippocampus, basal ganglia, cerebellum, pineal and pituitary glands.Brain Research, 559, 172–177.Google Scholar
  49. Jansen, K. L. R., Faull, R. L. M., Dragunow, M. and Synek, B. (1990). Alzheimer's disease: Changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors—An autoradiographic study.Neuroscience, 39, 613–617.Google Scholar
  50. King, G. L., and Dingledine, R. (1986). Evidence for the activation of the N-methyl-D-aspartate receptor during epileptic discharge. In R. Schwartz and Y. Ben-Ari (Eds.),Excitatory amino acids and epilepsy (pp. 520–570). New York, NY: Plenum.Google Scholar
  51. Kisvardy, Z. F., Cowey, A., Smith, A. D., and Somogyi, P. (1989). Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.Journal of Neuroscience, 9, 667–682.Google Scholar
  52. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., and Charney, D. S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans.Archives of General Psychiatry, 51, 199–214.Google Scholar
  53. Leary, T. F. (1983).Flashbacks: An autobiography. Los Angeles, CA: Tarcher.Google Scholar
  54. Leccese, A. P., Marquis, K. L., Mattia, A., and Moreton, J. E. (1986). The anticonvulsant and behavioural effects of phencyclidine and ketamine following chronic treatment in rats.Behavioral Brain Research, 22, 257–233.Google Scholar
  55. Lilly, J. C. (1961). Experiments in solitude, in maximum achievable physical isolation with water suspension, of intact healthy persons. In B. Flaherty (Ed.),Physiological aspects of space flight (pp. 238–247). New York, NY: Columbia University Press.Google Scholar
  56. Lilly, J. C. (1978).The scientist: A novel autobiography. New York, NY: Bantam/Lippincott.Google Scholar
  57. Lobner, D., and Lipton, P. (1990). σ-ligands and non-competitive NMDA antagonists inhibit glutamate release during cerebral ischemia.Neuroscience Letters, 117, 169–174.Google Scholar
  58. Mares, P., Lansitiakova, M., Vankova, S., Kubova, H., and Velisek, L. (1992). Ketamine blocks cortical epileptic afterdischarges but not paired-pulse and frequency potentiation.Neuroscience, 50, 339–344.Google Scholar
  59. Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA receptors in spinal cord neurons.Nature, 309, 261–263.Google Scholar
  60. McCarthy, D. A. (1981). History of the development of cataleptoid anesthetics of the phencyclidine type. In E. F. Domino (Ed.),Phencyclidine: Historical and current perspectives (pp. 80–115). Ann Arbor, MI: NPP Books.Google Scholar
  61. McCarthy, D. A., Chen, G., Kaump, D. H., and Ensor, C. J. (1965). General anesthetic and other pharmacological properties of 2-(O-chlorophenyl)-2-methylamino cyclohexanone HCl (CI-581).Journal of New Drugs, 5, 21–33.Google Scholar
  62. McGinty, J. F., Kanamatsu, T., Obie, J., and Hong, J. S. (1986). Modulation of opioid peptide metabolism by seizures: Differentiation of opioid subclasses.National Institute of Drug Abuse Research Monographs, 71, 89–101.Google Scholar
  63. McNaughton, B. C., and Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed system.Trends in Neurosciences, 10, 408–415.Google Scholar
  64. Meduna, L. J. (1950). The effect of carbon dioxide upon the functions of the brain. In L. J. Meduna (Ed.),Carbon dioxide therapy (pp. 23–40). Springfield, IL: Charles C Thomas.Google Scholar
  65. Meldrum, B. S., Evans, M. C., Swan, J. H., and Simon, R. P. (1987). Protection against hypoxic/ischaemic brain damage with excitatory amino acid antagonists.Medical Biology, 65, 153–157.Google Scholar
  66. Meltzer, H. Y. (Ed.). (1987).Psychopharmacology; The third generation of progress. New York, NY: Raven Press.Google Scholar
  67. Mody, I., and Heinemann, U. (1987). NMDA receptors of dentate gyrus cells participate in synaptic transmission following kindling.Nature, 326, 701–703.Google Scholar
  68. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989). The excitatory amino acid receptors: Their classes, pharmacology and distinct properties in the function of the nervous system.Annual Review of Pharmacology and Toxicology, 29, 365–402.Google Scholar
  69. Moody, R. A. (1975).Life after life. Covington, GA: Mockingbird Books.Google Scholar
  70. Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. (1986). Selective impairment of learning and blockade of EPT by NMDA antagonist AP5.Nature, 319, 744–776.Google Scholar
  71. Morse, M. L. (1989). Comments on “A neurobiological model for near-death experiences.”Journal of Near-Death Studies, 7, 223–228.Google Scholar
  72. Morse, M. L., Conner, D., and Tyler, D. (1985). Near-death experiences in a pediatric population.American Journal of Diseases of Children, 139, 595–563.Google Scholar
  73. Musacchio, J. M., Klein, M., and Canoll, P. D. (1990). Dextromethorphan sites, sigma receptors and the psychotomimetic effects of sigma opiates.Progress in Clinical and Biological Research, 328, 13–16.Google Scholar
  74. Myslobodsky, M. S., Golovchinsky, V., and Mintz, M. (1981). Ketamine: Convulsant or anticonvulsant?Pharmacology, Biochemistry, and Behavior, 14, 27–33.Google Scholar
  75. Nowak, L., Bergestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurons.Nature, 307, 462–465.Google Scholar
  76. Noyes, R., and Kletti, R. (1976a). Depersonalization in the face of life threatening danger: A description.Psychiatry, 39, 19–30.Google Scholar
  77. Noyes, R., and Kletti, R. (1976b). Depersonalization in the face of life threatening danger: An interpretation.Omega, 7, 103–108.Google Scholar
  78. Olney, J. W., Collins, R. C., and Sloviter, R. S. (1986). Excitotoxic mechanisms of epileptic brain damage.Advances in Neurology, 44, 857–877.Google Scholar
  79. Osis, K. and Haraldsson, E. (1977).At the hour of death. New York, NY: Avon.Google Scholar
  80. Oyama, T.Y., Jin, T., Yamaga, R., Ling, N. and Guillemin, R. (1980). Profound analgesic effects of β-endorphin in man.Lancet, 1, 122–124.Google Scholar
  81. Oye, N., Paulsen, O., and Maurset, A. (1992). Effects of ketamine on sensory perception: Evidence for a role of N-methyl-D-aspartate receptors.Journal of Pharmacology and Experimental Therapeutics, 260, 1209–1213.Google Scholar
  82. Parsons, C. G., Gibbens, H., Magnago, T. S. I., and Headley, P. M. (1988). At which ‘sigma’ site are the spinal actions of ketamine mediated?Neuroscience Letters, 85, 322–328.Google Scholar
  83. Persinger, M. A., and Makarec, K. (1987). Temporal lobe epileptic signs and correlative behaviors displayed by normal populations.Journal of General Psychology, 114, 179–195.Google Scholar
  84. Pichlmayr, I., Lips, U., and Kunkel, H. (1984).The electroencephalogram in anaesthesia. Berlin, Germany: Springer-Verlag.Google Scholar
  85. Peters, S., Koh, J., and Choi, D. W. (1987). Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons.Science, 236, 589–592.Google Scholar
  86. Pfieffer, A., Brantl, V., Herz, A., and Emrich, H. M. (1986). Psychotomimesis mediated by opiate receptors.Science, 233, 774–776.Google Scholar
  87. Quirion, R., Chicheportiche, R., Contreras, P. C., Johnston, K. M., Lodge, D., Tam, S. W., Woods, J.H., and Zukin, S. R. (1987). Classification and nomenclature of phencyclidine and sigma receptor sites.Trends in Neurosciences, 10, 444–446.Google Scholar
  88. Quirion, R., DiMaggio, D. A., French, E. D., Contreras, P. C., Shiloach, J., Pert, C. B., Everist, H., Pert, A., and O'Donohue, T. L. (1984). Evidence for an endogenous peptide ligand for the phencyclidine receptor.Peptides, 5, 967–977.Google Scholar
  89. Reich, D. L., and Silvay, G. S. (1989). Ketamine: An update on the first twenty-five years of clinical experience.Canadian Journal of Anaesthesia, 36, 186–197.Google Scholar
  90. Ring, K. (1980).Life at death: A scientific investigation of the near-death experience. New York, NY: Coward, McCann, and Geoghegan.Google Scholar
  91. Rogo, D. S. (1984). Ketamine and the near-death experience.Anabiosis: The Journal of Near-Death Studies, 4, 87–96.Google Scholar
  92. Rothman, S. M. (1984). Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death.Journal of Neuroscience, 4, 1884–1891.Google Scholar
  93. Rothman, S. M., and Olney, J. W. (1986). Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Annals of Neurology, 19, 105–111.Google Scholar
  94. Rothman, S. M., and Olney, J. W. (1987). Excitotoxicity and the NMDA receptor.Trends in Neurosciences, 107, 299–302.Google Scholar
  95. Rothman, S. M., Thurston, J. H., Hauhart, R. E., Clark, G. P., and Solomon, J. S. (1987). Ketamine protects hippocampal neurons from anoxia in vitro.Neuroscience, 21, 673–683.Google Scholar
  96. Rumpf, K., Pedick, J., Teuteberg, H., Munchhoff, W. and Nolte, H. (1969). Dream-like experiences during brief anaesthesia with ketamine, thiopental and propiadid. In H. Dreuscher (Ed.),Ketamine (pp. 161–180). Berlin, Germany: Springer-Verlag.Google Scholar
  97. Saavedra-Aguilar, J. C., and Gómez-Jeria, J. S. (1989). A neurobiological model for near-death experiences.Journal of Near-Death Studies, 7, 205–222.Google Scholar
  98. Sabom, M. B. (1982).Recollections of death: A medical investigation. New York, NY: Harper and Row.Google Scholar
  99. Schoenberg, J., and Sjolund, B. H. (1986). First order nociceptive synapses in rat dorsal horn are blocked by an amino acid antagonist.Brain Research, 379, 394–398.Google Scholar
  100. Schwartz, M. S., Virden, S., and Scott, D. F. (1974). Effects of ketamine on the electroencephalograph.Anaesthesia, 29, 135–140.Google Scholar
  101. Schwarz, S., Pohl, P., and Zhou, G.-Z. (1989). Steroid binding at σ-“opioid” receptors.Science, 246, 1635–1637.Google Scholar
  102. Shulgin, A., and Shulgin, A. (1991).Pihkal: A chemical love story. Berkeley, CA: Transform Press.Google Scholar
  103. Siegel, R. K. (1978). Phencyclidine and ketamine intoxication: A study of recreational users. In R. C. Peterson and R. C. Stillman (Eds.),Phencyclidine abuse: An appraisal (National Institute of Drug Abuse Research Monograph Number 21) (pp. 119–140). Rockville, MD: National Institute of Drug Abuse.Google Scholar
  104. Siegel, R. K. (1980). The psychology of life after death.American Psychologist, 35, 911–950.Google Scholar
  105. Siegel, R. K. (1981, January). Accounting for “afterlife” experiences.Psychology Today, pp. 65–75.Google Scholar
  106. Simon, R. P., Swan, S. H., Griffiths, T., and Meldrum, B. S. (1984). Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain.Science, 226, 850–852.Google Scholar
  107. Sklar, G. S., Zukin, S. R., and Reilly, T. A. (1981). Adverse reactions to ketamine anaesthesia: Abolition by a psychological technique.Anaesthesia, 36, 183–187.Google Scholar
  108. Sloviter, R. S. (1983). “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path.Brain Research Bulletin, 10, 675–697.Google Scholar
  109. Sonders, M. S., Keana, J. F., Weber, E. (1988). Phencyclidine and psychotomimetic sigma opiates: Recent insights into their biochemical and physiological sites of action.Trends in Neurosciences, 11, 37–40.Google Scholar
  110. Sotelo, J., Perez, R., Guevara, P., and Fernandez, A. (1995). Changes in brain, plasma and cerebrospinal fluid contents of ß-endorphin in dogs at the moment of death.Neurological Research, 17, 223–225.Google Scholar
  111. Sputz, R. (1989, October). I never met a reality I didn't like: A report on “Vitamin K.”High Times, pp. 64–82.Google Scholar
  112. Squire, L. R., and Zola-Morgan, S. (1988). Memory: Brain systems and behavior.Trends in Neurosciences, 11, 170–175.Google Scholar
  113. Stafford, P. (1977).Psychedelics encyclopedia. Berkeley, CA: And/Or Press.Google Scholar
  114. Stafford, P. (1992).Psychedelics encyclopedia (third expanded ed.). Berkeley, CA: Ronin Publishing.Google Scholar
  115. Stevens, J. (1988).Storming heaven: LSD and the American dream. New York, NY: HarperCollins.Google Scholar
  116. Stevenson, I., and Greyson, B. (1979). Near-death experiences: Relevance to the question of survival after death.Journal of the American Medical Association, 242, 265–267.Google Scholar
  117. Su, T. P., London, E. D., and Jaffe, J. H. (1988). Steroid binding at σ receptors suggests a link between endocrine, nervous and immune systems.Science, 240, 219–223.Google Scholar
  118. Taberner, P. V. (1976). The anticonvulsant activity of ketamine against seizures induced by pentylenetetrazol and mercaptopropionic acid.European Journal of Pharmacology, 39, 305–311.Google Scholar
  119. Thomson, A. M. (1986). A magnesium-sensitive post-synaptic potential in rat cerebral cortex resembles neuronal responses to N-methylaspartate.Journal of Physiology, 370, 531–549.Google Scholar
  120. Thomson, A. M., West, D. C., and Lodge, D. (1985). An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: A site of action of ketamine?Nature, 313, 479–481.Google Scholar
  121. Vaupel, D. B. (1983). Naltrexone fails to antagonize the effects of PCP and SKF 10,047 in the dog.European Journal of Pharmacology, 92, 269–274.Google Scholar
  122. Vollenweider, F. X. (1996). Relationship of altered states of consciousness and principal components of brain energy metabolism by FDG-PET. In M. Schlichting (Ed.),Welten des Bewusstseins/Worlds of Consciousness: Abstracts of the 2nd International Congress of the European College for the Study of Consciousness, Band 6 Vol. (pp. 29–30). Berlin, Germany: Verlag für Wissenschaft und Bildung.Google Scholar
  123. Walker, J. M., Bowen, W. D., Walker, F. O., Matsumoto, R. R., De Costa, B., and Rice, K. C. (1990). Sigma receptors: Biology and function.Pharmacological Reviews, 42, 355–402.Google Scholar
  124. Westbrook, G. L., and Mayer, M. L. (1987). Micromolecular concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons.Nature, 328, 640–643.Google Scholar
  125. Westerberg, E., Monaghan, D. T., Cotman, C. W., and Wieloch, T. (1987). Excitatory amino acid receptors and ischemic brain damage in the rat.Neuroscience Letters, 73, 119–124.Google Scholar
  126. White, P. F., Ham, J., Way, W. L., and Trevor, A. J. (1980). Pharmacology of ketamine isomers in surgical patients.Anesthesiology, 52, 231–239.Google Scholar
  127. White, P. F., Schuttler, J., Schafer, A., Stanski, D. R., Horai, Y., and Trevor, A. J. (1985). Comparative pharmacology of ketamine isomers.British Journal of Anaesthesia, 57, 197–203.Google Scholar
  128. White, P. F., Way, W. L., and Trevor, A. J. (1982). Ketamine—Its pharmacology and therapeutic uses.Anesthesiology, 56, 119–136.Google Scholar
  129. White, W. F., Nadler, J. V., Hamburger, A., Cotman, C. W., and Cummins, J. T. (1977). Glutamate as a transmitter of hippocampal perforant path.Nature, 270, 356–357.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1997

Authors and Affiliations

  • Karl L. R. Jansen
    • 1
  1. 1.The Maudsley HospitalLondonUnited Kingdom

Personalised recommendations