Genetic Resources and Crop Evolution

, Volume 50, Issue 7, pp 707–721 | Cite as

Potential of wild species for genetic enhancement of some semi-arid food crops

  • N. Kameswara RaoEmail author
  • L.J. Reddy
  • P.J. Bramel


Discovery and incorporation of genes from wild species provide means to sustain crop improvement, particularly when levels of resistance in the cultigens are low and virulent strains of pests and pathogens overcome the host plant resistance. The extent of utilization and the potential of the wild genepool for genetic enhancement were reviewed in five important food crops viz. sorghum, pearl millet, chickpea, pigeonpea and groundnut grown in the semi-arid tropics. Introgression from compatible wild germplasm in the primary gene pool resulted in transfer of new cytoplasmic male sterility systems in pearl millet and pigeonpea, development of high protein, cleistogamous flower and dwarf pigeonpea lines and foliar disease resistant groundnut cultivars. Utilization of wild species in secondary and tertiary gene pools has been generally limited due to sterility, restricted recombination or cross incompatibility. Nevertheless, these species are extremely important as they contain high levels of resistance to several important biotic and abiotic stresses. Several of them, like those belonging to the Parasorghum section and the rhizomatous Arachis species are sources of multiple resistances and hold great promise to sustain crop productivity.

Arachis Cajanus Chickpea Cicer Disease Groundnut Introgression Pearl millet Pennisetum Pest Pigeonpea Resistance Sorghum Wild species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdou Y.A.M., Gregory W.C. and Cooper W.E. 1974. Sources and nature of resistance to Cercospora arachidicola Hori and Cercospora personatum (Berk et Curtis) Deighton in Arachis species. Peanut Sci. 1: 6-11.Google Scholar
  2. Akinola J.O., Whiteman P.C. and Wallis E.S. 1975. The agronomy of pigeonpea (Cajanus cajan). Commonwealth Bureau of Pas tures and Field Crops Review Series 1, pp. 57.Google Scholar
  3. Amaya F.J., Young C.T. and Hammon R.O. 1977. The tryptophan content of the U.S. commercial and some South American wild genotypes of the genus Arachis. A survey. Oleagineux 32: 225-229.Google Scholar
  4. Ariyanayagam R.P., Rao A.N. and Zaveri P.P. 1995. Cytoplasmic geneic male sterility in interspecific matings of Cajanus. Crop Sci. 35: 981-985.Google Scholar
  5. AusPGRIS (Australian Plant Genetic Resources Information Ser-vices) 2002a. Summary statistics for species matching: Sorghum (Online Database). Available: http: / / extra / asp/AusPGRIS/ Scripts / Display-Summary-Statistics.asp ?whichOne=Genus-Species&match=Sorghum (verified 1 April 2002).Google Scholar
  6. AusPGRIS (Australian Plant Genetic Resources Information Ser-vices) 2002b. Summary statistics for species matching: Cajanus (Online Database). Available: http: / / extra / asp/AusPGRIS/ Scripts / Display-Summary-Statistics.asp-?whichOne=Genus-Species&match=Cajanus (verified 1 April 2002).Google Scholar
  7. Bapat D.R. and Mote U.N. 1983. Sources of shootfly resistance in sorghum. J. Maharashtra Agri. Univ. 7: 238-240.Google Scholar
  8. Bramel-Cox P.J. and Cox T.S. 1988. Use of wild sorghums in rd sorghum improvement. In: Wilkinson D. (ed.), Proc. 43rd Ann. Corn & Sorghum Industry Res. Conf. Amer. Seed Trade Assoc., Washington D.C., pp. 13-26.Google Scholar
  9. Brinsmead R.B., Rettke M.L., Irwin J.A.G., Ryley M.J. and Lan-gdon W. 1985. Resistance in chickpea to Phytophthora megas-perma f. sp. medicaginis. Plant Dis. 69: 504-506.Google Scholar
  10. Cocking E.C. 1985. Protoplast fusion and its application in agricul-ture In: Biotechnology in International Agricultural Research. Proceedings of the inter-center seminar on International Agricul-tural Research Centers (IARCs) and Biotechnology. IRRI, Manila, Philippines, pp. 182-187.Google Scholar
  11. Demski J.W. and Sowell G. Jr. 1981. Resistance to peanut mottle virus in Arachis sp. Peanut Sci. 8: 43-44.Google Scholar
  12. de Wet J.M.J. 1978. Systematics and evolution of Sorghum Sect. Sorghum (Gramineae). Amer. J. Bot. 65: 477-484.Google Scholar
  13. Di Vito M., Singh K.B., Greco N. and Saxena M.C. 1996. Sources of resistance to cyst nematode in cultivated and wild Cicer species. Genet. Resour. Crop Evol. 43: 103-107.Google Scholar
  14. Dodia D.A., Patel A.J., Patel I.S., Dhulia F.K. and Tikka S.B.S. 1996. Antibiotic effect of pigeonpea wild relatives on Heliothis armigera. Int. Chickpea & Pigeonpea Newsl. 3: 100-101.Google Scholar
  15. Dujardin M. and Hanna W.W. 1989. Crossability of pearl millet with wild Pennisetum species. Crop Sci. 29: 77-80.Google Scholar
  16. Duncan R.R., Bramel-Cox P.J. and Miller F.R. 1991. Contributions of introduced sorghum germplasm to hybrids development in the USA. In: Shands H.L. and Wiesner L.E. (eds), Use of plant Introductions in Cultivar Development, Part 1. Crop Sci. Soc. Amer. Inc., Madison, USA CSSA Special Publication no. 17., pp. 69-101.Google Scholar
  17. Dundas I.S. 1990. Pigeonpea. Cytology and cytogenetics-perspectives and prospects. In: Nene Y.L., Hall S.D. and Sheila V.K. (eds), The Pigeonpea. C.A.B. International, Wallingford, UK, pp. 117-136.Google Scholar
  18. Franzmann B.A. and Hardy A.T. 1996. Testing the host status of Australian indigenous sorghums for the sorghum midge In: Foale M.A., Henzel R.A. and Kneipp J.F.(eds), Proceedings of 3 Australian Sorghum Conference. Australian Institute of Agricultural Sciences, Melbourne, pp. 365-376.Google Scholar
  19. Frederiksen R.A. and Duncan R.R. 1982. Sorghum diseases in North America. In: de Milliano W.A.J., Frederiksen R.A. and Bengston G.D. (eds), Sorghum and Millet Diseases: A Second World Review. ICRISAT, Patancheru, India, pp. 85-88.Google Scholar
  20. Gregory W.C., Gregory M.P., Krapovickas A., Smith B.W. and Yarbrough J.A. 1973. Peanuts. Cultures and Uses. Amer. Peanut Res. Edu. Asso., Stillwater, USA.Google Scholar
  21. Hammons R.O. 1970. Registration of Spancross peanut. Crop Sci. 10: 459.Google Scholar
  22. Hanna W.W. 1987. Utilization of wild relatives of pearl millet Proceedings of International Pearl Millet Workshop. ICRISAT, Patancheru, India, pp. 33-42.Google Scholar
  23. Hanna W.W. 1989. Characteristics and stability of a new nuclear-cytoplasmic male sterile sources in pearl millet. Crop Sci. 29: 1457-1459.Google Scholar
  24. Hanna W.W. 1992. Utilization of germplasm from wild species. In: Hanna W.W. (ed.), Desertified Grass Lands. Their Biology and Management. The Linnean Society of London, London, pp. 251-257.Google Scholar
  25. Hanna W.W. 1997. Influence of cytoplasms from a wild grassy subspecies on dry matter yields in pearl millet. Crop Sci. 37: 614-616.Google Scholar
  26. Hanna W.W. and Dujardin M. 1986. Cytogenetics of Pennisetum schweinfurthii Pilgerand its hybrids with pearl millet. Crop Sci. 26: 449-453.Google Scholar
  27. Harlan J.R. and de Wet J.M.J. 1971. Towards a rational classifica-tion of cultivated plants. Taxon 20: 509-517.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Genetic Resources & Enhancement ProgramInternational Crops Research Institute for the Semi-Arid TropicsPatancheruIndia

Personalised recommendations