Pharmaceutical Research

, Volume 20, Issue 8, pp 1103–1112 | Cite as

Polymeric Growth Factor Delivery Strategies for Tissue Engineering

  • Ruth R. Chen
  • David J. Mooney


Purpose. Tissue engineering seeks to replace and regrow damaged or diseased tissues and organs from either cells resident in the surrounding tissue or cells transplanted to the tissue site. The purpose of this review is to present the application of polymeric delivery systems for growth factor delivery in tissue engineering.

Methods. Growth factors direct the phenotype of both differentiated and stem cells, and methods used to deliver these molecules include the development of systems to deliver the protein itself, genes encoding the factor, or cells secreting the factor.

Results. Results in animal models and clinical trials indicate that these approaches may be successfully used to promote the regeneration of numerous tissue types.

Conclusions. Controlling the dose, location, and duration of these factors through polymeric delivery strategies will dictate their utility in tissue regeneration.

regeneration drug delivery gene delivery cell transplantation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Mooneyand and A. G. Mikos. Growing new organs. Sci. Am. 280:60-65 (1999).Google Scholar
  2. 2.
    P. Aebischer and J. Ridet. Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci. 24:533-540 (2001).Google Scholar
  3. 3.
    F. C. Payumo, H. D. Kim, M. A. Sherling, L. P. Smith, C. Powell, X. Wang, H. S. Keeping, R. F. Valentini, and H. H. Vandenburgh. Tissue engineering skeletal muscle for orthopaedic applications. Clin. Orthop. Oct:S228-S242 (2002).Google Scholar
  4. 4.
    E. Pimentel. Handbook of Growth Factors I: General Basic Aspects. CRC Press, Boca Raton, Florida, 1994.Google Scholar
  5. 5.
    D. F. Bowen-Pope, T. W. Malpass, D. M. Foster, and R. Ross. Platelet-derived growth factor in vivo: levels, activity, and rate of clearance. Blood 64:458-469 (1984).Google Scholar
  6. 6.
    E. R. Edelman, M. A. Nugent, and M. J. Karnovsky. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc. Natl. Acad. Sci. USA 90:1513-1517 (1993).Google Scholar
  7. 7.
    D. F. Lazarous, M. Shou, M. Scheinowitz, E. Hodge, V. Thirumurti, A. N. Kitsiou, J. A. Stiber, A. D. Lobo, S. Hunsberger, E. Guetta, S. E. Epstein, and E. F. Unger. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94:1074-1082 (1996).Google Scholar
  8. 8.
    G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 407:242-248 (2000).Google Scholar
  9. 9.
    J. B. Murray, L. Brown, R. Langer, and M. Klagsburn. A micro sustained release system for epidermal growth factor. In Vitro 19:743-748 (1983).Google Scholar
  10. 10.
    V. Moulin. Growth factors in skin wound healing. Eur. J. Cell Biol. 68:1-7 (1995).Google Scholar
  11. 11.
    K. Hashimoto. Regulation of keratinocyte function by growth factors. J. Dermatol. Sci. 24(ppl 1):S46-S50 (2000).Google Scholar
  12. 12.
    C. H. Heldin and B. Westermark. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79:1283-1316 (1999).Google Scholar
  13. 13.
    M. H. Branton and J. B. Kopp. TGF-#x0392 and fibrosis. Microbes Infect. 1:1349-1365 (1999).Google Scholar
  14. 14.
    T. G. Terrell, P. K. Working, C. P. Chow, and J. D. Green. Pathology of recombinant human transforming growth factor-#x0392 1 in rats and rabbits. Int. Rev. Exp. Pathol. 34(Pt B):43-67 (1993).Google Scholar
  15. 15.
    A. Buckley, J. M. Davidson, C. D. Kamerath, T. B. Wolt, and S. C. Woodward. Sustained release of epidermal growth factor accelerates wound repair. Proc. Natl. Acad. Sci. USA 82:7340-7344 (1985).Google Scholar
  16. 16.
    T. A. Mustoe, G. F. Pierce, A. Thomason, P. Gramates, M. B. Sporn, and T. F. Deuel. Accelerated healing of incisional wounds in rats induced by transforming growth factor-#x0392. Science 237:1333-1336 (1987).Google Scholar
  17. 17.
    M. K. Nagau and J. M. Embil. Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert. Opin. Biol. Ther. 2:211-218 (2002).Google Scholar
  18. 18.
    R. J. Rohrich, S. A. Trott, M. Love, S. J. Beran, and H. H. Orenstein. Mersilene suture as a vehicle for delivery of growth factors in tendon repair. Plast. Reconstr. Surg. 104:1713-1717 (1999).Google Scholar
  19. 19.
    K. Ulubayram, A. Nur Cakar, P. Korkusuz, C. Ertan, and N. Hasirci. EGF containing gelatin-based wound dressings. Biomaterials 22:1345-1356 (2001).Google Scholar
  20. 20.
    M. Centrella, T. L. McCarthy, and E. Canalis. Effects of transforming growth factors on bone cells. Connect. Tissue Res. 20:267-275 (1989).Google Scholar
  21. 21.
    L. Lu, M. J. Yaszemski, and A. G. Mikos. TGF-#x03921 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J. Bone Joint. Surg. Am. 83-A(ppl 1):S82-S91 (2001).Google Scholar
  22. 22.
    K. Elima. Osteoinductive proteins. Ann. Med. 25:395-402 (1993).Google Scholar
  23. 23.
    G. Li, M. L. Bouxsein, C. Luppen, X. J. Li, M. Wood, H. J. Seeherman, J. M. Wozney, and H. Simpson. Bone consolidation is enhanced by rhBMP-2 in a rabbit model of distraction osteogenesis. J. Orthop. Res. 20:779-788 (2002).Google Scholar
  24. 24.
    S. D. Boden, J. Kang, H. Sandhu, and J. G. Heller. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in Clinical Studies. Spine 27:2662-2673 (2002).Google Scholar
  25. 25.
    K. Bessho, D. L. Carnes, R. Cavin, and J. L. Ong. Experimental studies on bone induction using low-molecular-weight poly (DL-lactide-co-glycolide) as a carrier for recombinant human bone morphogenetic protein-2. J. Biomed. Mater. Res. 61:61-65 (2002).Google Scholar
  26. 26.
    M. Mori, M. Isobe, Y. Yamazaki, K. Ishihara, and N. Nakabayashi. Restoration of segmental bone defects in rabbit radius by biodegradable capsules containing recombinant human bone morphogenetic protein-2. J. Biomed. Mater. Res. 50:191-198 (2000).Google Scholar
  27. 27.
    J. A. Burdick, M. N. Mason, A. D. Hinman, K. Thorne, and K. S. Anseth. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J Control. Release 83:53-63 (2002).Google Scholar
  28. 28.
    B. H. Woo, B. F. Fink, R. Page, J. A. Schrier, Y. W. Jo, G. Jiang, M. DeLuca, H. C. Vasconez, and P. P. DeLuca. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm. Res. 18:1747-1753 (2001).Google Scholar
  29. 29.
    W. L. Murphy, M. C. Peters, D. H. Kohn, and D. J. Mooney. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21:2521-2527 (2000).Google Scholar
  30. 30.
    A. Minamide, M. Kawakami, H. Hashizume, R. Sakata, and T. Tamaki. Evaluation of carriers of bone morphogenetic protein for spinal fusion. Spine 26:933-939 (2001).Google Scholar
  31. 31.
    J. Street, M. Bao, L. deGuzman, S. Bunting, F. V. Peale Jr., N. Ferrara, H. Steinmetz, J. Hoeffel, J. L. Cleland, A. Daugherty, N. van Bruggen, H. P. Redmond, R. A. Carano, and E. H. Filvaroff. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99:9656-9661 (2002).Google Scholar
  32. 32.
    K. K. Hirschi, T. C. Skalak, S. M. Peirce, and C. D. Little. Vascular assembly in natural and engineered tissues. Ann. NY Acad. Sci. 961:223-242 (2002).Google Scholar
  33. 33.
    S. B. Freedman and J. M. Isner. Therapeutic angiogenesis for coronary artery disease. Ann. Intern. Med. 136:54-71 (2002).Google Scholar
  34. 34.
    R. Laham. Angiogenesis (clinical trials). Can. J. Cardiol. 17(ppl A):29A-32A (2001).Google Scholar
  35. 35.
    A. B. Ennett and D. J. Mooney. Tissue engineering strategies for in vivo neovascularisation. Expert. Opin. Biol. Ther. 2:805-818 (2002).Google Scholar
  36. 36.
    R. J. Laham, F. W. Sellke, E. R. Edelman, J. D. Pearlman, J. A. Ware, D. L. Brown, J. P. Gold, and M. Simons. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100:1865-1871 (1999).Google Scholar
  37. 37.
    M. C. Peters, P. J. Polverini, and D. J. Mooney. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60:668-678 (2002).Google Scholar
  38. 38.
    Y. Kawakami, H. Iwata, Y. J. Gu, M. Miyamoto, Y. Murakami, A. N. Balamurugan, M. Imamura, and K. Inoue. Successful subcutaneous pancreatic islet transplantation using an angiogenic growth factor-releasing device. Pancreas 23:375-381 (2001).Google Scholar
  39. 39.
    H. Lee, R. A. Cusick, F. Browne, T. Ho Kim, P. X. Ma, H. Utsunomiya, R. Langer, and J. P. Vacanti. Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation 73:1589-1593 (2002).Google Scholar
  40. 40.
    T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029-1034 (2001).Google Scholar
  41. 41.
    J. M. Isner. Myocardial gene therapy. Nature 415:234-239 (2002).Google Scholar
  42. 42.
    H. Kuwahara, A. T. Mitchell, M. D. Macklin, J. Zhao, D. Listengarten, and L. G. Phillips. Transfer of platelet-derived growth factor-BB gene by gene gun increases contraction of collagen lattice by fibroblasts in diabetic and non-diabetic human skin. Scand. J. Plast. Reconstr. Surg. Hand Surg. 34:301-307 (2000).Google Scholar
  43. 43.
    C. K. Byrnes, F. H. Khan, P. H. Nass, C. Hatoum, M. D. Duncan, and J. W. Harmon. Success and limitations of a naked plasmid transfection protocol for keratinocyte growth factor-1 to enhance cutaneous wound healing. Wound Repair Regen. 9:341-346 (2001).Google Scholar
  44. 44.
    D. S. Musgrave, P. Bosch, S. Ghivizzani, P. D. Robbins, C. H. Evans, and J. Huard. Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 24:541-547 (1999).Google Scholar
  45. 45.
    D. F. Lazarous, M. Shou, J. A. Stiber, E. Hodge, V. Thirumurti, L. Goncalves, and E. F. Unger. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc. Res. 44:294-302 (1999).Google Scholar
  46. 46.
    T. Reid, R. Warren, and D. Kirn. Intravascular adenoviral agents in cancer patients: Lessons from clinical trials. Cancer Gene Ther. 9:979-986 (2002).Google Scholar
  47. 47.
    L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551-554 (1999).Google Scholar
  48. 48.
    V. Labhasetwar, J. Bonadio, S. Goldstein, W. Chen, and R. J. Levy. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J. Pharm. Sci. 87:1347-1350 (1998).Google Scholar
  49. 49.
    D. Wang, D. R. Robinson, and G. S. Kwon. and J. Samuel. Encapsulation of plasmid DNA in biodegradable poly(D, L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Control. Release 57:9-18 (1999).Google Scholar
  50. 50.
    S. A. Audouy, L. F. de Leij, D. Hoekstra, and G. Molema. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm. Res. 19:1599-1605 (2002).Google Scholar
  51. 51.
    J. A. Andrades, M. E. Nimni, B. Han, D. C. Ertl, F. L. Hall, and J. Becerra. Type I collagen combined with a recombinant TGF-#x0392 serves as a scaffold for mesenchymal stem cells. Int. J. Dev. Biol. (ppl 1):107S-108S (1996).Google Scholar
  52. 52.
    E. Alsberg, K. W. Anderson, A. Albeiruti, J. A. Rowley, and D. J. Mooney. Engineering growing tissues. Proc. Natl. Acad. Sci. USA 99:12025-12030 (2002).Google Scholar
  53. 53.
    K. Partridge, X. Yang, N. M. Clarke, Y. Okubo, K. Bessho, W. Sebald, S. M. Howdle, K. M. Shakesheff, and R. O. Oreffo. Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem. Biophys. Res. Commun. 292:144-152 (2002).Google Scholar
  54. 54.
    S. T. Boyce, R. J. Kagan, K. P. Yakuboff, N. A. Meyer, M. T. Rieman, D. G. Greenhalgh, and G. D. Warden. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann. Surg. 235:269-279 (2002).Google Scholar
  55. 55.
    X. Chen, M. Katakowski, Y. Li, D. Lu, L. Wang, L. Zhang, J. Chen, Y. Xu, S. Gautam, A. Mahmood, and M. Chopp. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J. Neurosci. Res. 69:687-691 (2002).Google Scholar
  56. 56.
    A. S. Breitbart, J. M. Mason, C. Urmacher, M. Barcia, R. T. Grant, R. G. Pergolizzi, and D. A. Grande. Gene-enhanced tissue engineering: applications for wound healing using cultured dermal fibroblasts transduced retrovirally with the PDGF-B gene. Ann. Plast. Surg. 43:632-639 (1999).Google Scholar
  57. 57.
    J. M. Mason, A. S. Breitbart, M. Barcia, D. Porti, R. G. Pergolizzi, and D. A. Grande. Cartilage and bone #x00AEeneration using gene-enhanced tissue engineering. Clin. Orthop. Oct:S171-S178 (2000).Google Scholar
  58. 58.
    H. Iwaguro, J. Yamaguchi, C. Kalka, S. Murasawa, H. Masuda, S. Hayashi, M. Silver, T. Li, J. M. Isner, and T. Asahara. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular #x00AEeneration. Circulation 105:732-738 (2002).Google Scholar
  59. 59.
    Y. Lu, J. Shansky, M. Del Tatto, P. Ferland, S. McGuire, J. Marszalkowski, M. Maish, R. Hopkins, X. Wang, P. Kosnik, M. Nackman, A. Lee, B. Creswick, and H. Vandenburgh. Therapeutic potential of implanted tissue-engineered bioartificial muscles delivering recombinant proteins to the sheep heart. Ann. NY Acad. Sci. 961:78-82 (2002).Google Scholar
  60. 60.
    H. Peng, V. Wright, A. Usas, B. Gearhart, H. C. Shen, J. Cummins, and J. Huard. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 110:751-759 (2002).Google Scholar
  61. 61.
    A. S. Breitbart, D. A. Grande, J. Laser, M. Barcia, D. Porti, S. Malhotra, A. Kogon, R. T. Grant, and J. M. Mason. Treatment of ischemic wounds using cultured dermal fibroblasts transduced retrovirally with PDGF-B and VEGF121 genes. Ann Plast Surg 46:555-561 (2001).Google Scholar
  62. 62.
    R. B. Rutherford, M. Moalli, R. T. Franceschi, D. Wang, K. Gu, and P. H. Krebsbach. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng. 8:441-452 (2002).Google Scholar
  63. 63.
    J. Y. Lee, S. H. Nam, S. Y. Im, Y. J. Park, Y. M. Lee, Y. J. Seol, C. P. Chung, and S. J. Lee. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J. Control. Release 78:187-197 (2002).Google Scholar
  64. 64.
    K. A. Hildebrand, S. L. Woo, D. W. Smith, C. R. Allen, M. Deie, B. J. Taylor, and C. C. Schmidt. The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am. J. Sports Med. 26:549-554 (1998).Google Scholar
  65. 65.
    D. M. Arm, A. F. Tencer, S. D. Bain, and D. Celino. Effect of controlled release of platelet-derived growth factor from a porous hydroxyapatite implant on bone ingrowth. Biomaterials 17:703-709 (1996).Google Scholar
  66. 66.
    C. M. Mierisch, S. B. Cohen, L. C. Jordan, P. G. Robertson, G. Balian, and D. R. Diduch. Transforming growth factor-#x0392 in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy 18:892-900 (2002).Google Scholar
  67. 67.
    M. Raschke, B. Wildemann, P. Inden, H. Bail, A. Flyvbjerg, J. Hoffmann, N. P. Haas, and G. Schmidmaier. Insulin-like growth factor-1 and transforming growth factor-#x03921 accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs. Bone 30:144-151 (2002).Google Scholar
  68. 68.
    J. W. Vehof, M. T. Haus, A. E. de Ruijter, P. H. Spauwen, and J. A. Jansen. Bone formation in transforming growth factor #x0392-I-loaded titanium fiber mesh implants. Clin. Oral Implants Res. 13:94-102 (2002).Google Scholar
  69. 69.
    P. A. Puolakkainen, D. R. Twardzik, J. E. Ranchalis, S. C. Pankey, M. J. Reed, and W. R. Gombotz. The enhancement in wound healing by transforming growth factor-#x0392 1 (TGF-#x0392 1) depends on the topical delivery system. J. Surg. Res. 58:321-329 (1995).Google Scholar
  70. 70.
    S. Govender, C. Csimma, H. K. Genant, A. Valentin-Opran, Y. Amit, R. Arbel, H. Aro, D. Atar, M. Bishay, M. G. Borner, P. Chiron, P. Choong, J. Cinats, B. Courtenay, R. Feibel, B. Geulette, C. Gravel, N. Haas, M. Raschke, E. Hammacher, D. Van Der Velde, P. Hardy, M. Holt, C. Josten, R. L. Ketterl, B. Lindeque, G. Lob, H. Mathevon, G. McCoy, D. Marsh, R. Miller, E. Munting, S. Oevre, L. Nordsletten, A. Patel, A. Pohl, W. Rennie, P. Reynders, P. M. Rommens, J. Rondia, W. C. Rossouw, P. J. Daneel, S. Ruff, A. Ruter, S. Santavirta, T. A. Schildhauer, C. Gekle, R. Schnettler, D. Segal, H. Seiler, R. B. Snowdowne, J. Stapert, G. Taglang, R. Verdonk, L. Vogels, A. Weckbach, A. Wentzensen, and T. Wisniewski. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Joint. Surg. Am. 84-A:2123-2134. (2002).Google Scholar
  71. 71.
    K. A. Selvig, R. G. Sorensen, J. M. Wozney, and U. M. Wikesjo. Bone repair following recombinant human bone morphogenetic protein-2 stimulated periodontal #x00AEeneration. J. Periodontol. 73:1020-1029 (2002).Google Scholar
  72. 72.
    S. Itoh, M. Kikuchi, K. Takakuda, K. Nagaoka, Y. Koyama, J. Tanaka, and K. Shinomiya. Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J. Biomed. Mater. Res. 63:507-515 (2002).Google Scholar
  73. 73.
    N. Saito, T. Okada, H. Horiuchi, N. Murakami, J. Takahashi, M. Nawata, H. Ota, K. Nozaki, and K. Takaoka. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 19:332-335 (2001).Google Scholar
  74. 74.
    T. R. Blattert, G. Delling, P. S. Dalal, C. A. Toth, H. Balling, and A. Weckbach. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 27:2697-2705 (2002).Google Scholar
  75. 75.
    J. N. Grauer, T. C. Patel, J. S. Erulkar, N. W. Troiano, M. M. Panjabi, and G. E. Friedlaender. 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 26:127-33 (2001).Google Scholar
  76. 76.
    U. Ripamonti, J. Crooks, and D. C. Rueger. Induction of bone formation by recombinant human osteogenic protein-1 and sintered porous hydroxyapatite in adult primates. Plast. Reconstr. Surg. 107:977-988 (2001).Google Scholar
  77. 77.
    K. Mizuno, K. Yamamura, K. Yano, T. Osada, S. Saeki, N. Takimoto, T. Sakurau, and Y. Nimura. Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J. Biomed. Mater. Res. 64:177-181 (2003).Google Scholar
  78. 78.
    J. J. Lopez, E. R. Edelman, A. Stamler, M. G. Hibberd, P. Prasad, K. A. Thomas, J. DiSalvo, R. P. Caputo, J. P. Carrozza, P. S. Douglas, F. W. Sellke, and M. Simons. Angiogenic potential of perivascularly delivered aFGF in a porcine model of chronic myocardial ischemia. Am. J. Physiol. 274:H930-H936 (1998).Google Scholar
  79. 79.
    N. Fournier and C. J. Doillon. Biological molecule-imp#x00AEnated polyester: an in vivo angiogenesis study. Biomaterials 17:1659-1665 (1996).Google Scholar
  80. 80.
    J. L. Cleland, E. T. Duenas, A. Park, A. Daugherty, J. Kahn, J. Kowalski, and A. Cuthbertson. Development of poly-(D,L-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Release 72:13-24 (2001).Google Scholar
  81. 81.
    N. Kipshidze, P. Chawla, and M. H. Keelan. Fibrin meshwork as a carrier for delivery of angiogenic growth factors in patients with ischemic limb. Mayo Clin. Proc. 74:847-848 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn Arbor

Personalised recommendations