Euphytica

, Volume 132, Issue 3, pp 269–277 | Cite as

Genetic relationships of macadamia cultivars and species revealed by AFLP markers

  • D.L. Steiger
  • P.H. Moore
  • F. Zee
  • Z. Liu
  • R. Ming
Article

Abstract

World production of macadamia nuts is based on two species, the smooth shell Macadamia integrifolia Maiden and Betche, and the rough shell Macadamiatetraphylla L.A.S. Johnson, and their hybrids. One hundred and five AFLP markers were used to analyze 26 macadamia accessions representing four species: M. integrifolia, M. tetraphylla,M. ternifolia, and M. hildebrandii as well as a wild relative,Hicksbeachia pinnatifolia (rose nut).Each macadamia accession showed distinct AFLP fingerprints indicating a significant level of genetic variation in this macadamia germplasm collection. The fourMacadamia species included in this study were clearly separated using cluster analysis with AFLP marker data. Based on a single accession, the separation of M. ternifolia from M. integrifoliasuggested the relatively distant genetic relationship between these two species and casts doubts on the notion that the M. ternifolia may be a variant of M. integrifolia. Within the major cluster ofM. integrifolia, nine established smooth shell cultivars were separated into two sub-clusters, suggesting the heterozygous nature of the original gene pool that had contributed to macadamia variety improvement programs. M. hildebrandii and H. pinnatifoliaformed a distinct cluster and share dramatically less genetic similarity with the other Macadamia species. Additional data would be needed to clarify the phylogenetic nature and status of M. hildebrandii in the genus Macadamia.

DNA fingerprinting germplasm genetic diversity molecular phylogeny polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aradhya, M.K., L.K. Yee, F.T. Zee, & R.M. Manshardt, 1998. Genetic variability in Macadamia. Genet Res and Crop Evol 45: 19-32.CrossRefGoogle Scholar
  2. Breyne, P., D. Rombaut, A. Van Gysel, M. Van Montagu, & T. Gerats, 1999. AFLP analysis of genetic diversity within and between Arabidopsis thaliana ecotypes. Mol Gen Genet 261: 627-634.PubMedCrossRefGoogle Scholar
  3. Chittenden, L.M., K.F. Schertz, Y.R. Lin, R.A. Wing, & A.H. Paterson, 1994. A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87: 925-933.CrossRefGoogle Scholar
  4. Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology 26: 297-302.CrossRefGoogle Scholar
  5. Erschadi, S., G. Haberer, M. Schoniger & R.A. Torres-Ruiz, 2000. Estimating genetic diversity of Arabidopsis thaliana ecotypes with amplified fragment length polymorphism (AFLP). Theor Appl Genet 100: 633-640.Google Scholar
  6. Gross, C.L., 1995. Macadamia. Flora of Australia 16: 419-425.Google Scholar
  7. Hamilton, R.A. & E.T. Fukunaga, 1959. Growing macadamia nuts in Hawaii. UH AES Bul 121: 5-15.Google Scholar
  8. Hamilton, R.A. & E.T. Fukunaga, 1962. Testing Australian macadamia nut varieties in Hawaii. Proc 2nd Annual Meeting of the Hawaiian Macadamia Producers Association, pp. 27-32.Google Scholar
  9. Hamilton, R.A. & E.T. Fukunaga, 1973. Development and evaluation of macadamia nut varieties. Calif Macadamia Soc Yearb 19: 32-39.Google Scholar
  10. Hamilton, R.A. & P.J. Ito, 1976. Development of Macadamia nut cultivars in Hawaii. Calif Macadamia Soc Yearb 22: 94-100.Google Scholar
  11. Hamilton, R.A. & P.J. Ito, 1977. Mauka and Makai, two new macadamia cultivars suitable for high and low elevations. Proc 17th Annual Meeting of the Hawaiian Macadamia Producers Association, pp. 34-40.Google Scholar
  12. Hamilton, R.A. & M. Nakamura, 1971. Kau, a promising new macadamia variety. Proc 11th Annual Meeting of the Hawaiian Macadamia Producers Association, pp. 29-33.Google Scholar
  13. Hamilton, R.A. & H. Ooka, 1966. Keaau-a new commercial macadamia. Proc 6th Annual Meeting of the Hawaiian Macadamia Producers Association, pp. 10-13.Google Scholar
  14. Hamilton, R.A., C.G. Cavaletto, & D. Anderson, 1981a. 'Pahala' Macadamia named. Proc 21th Annual Meeting of the Hawaiian Macadamia Producers Association, pp. 69-75.Google Scholar
  15. Hamilton, R.A., P.J. Ito, & C.G. Cavaletto, 1981b. 'Purvis' macadamia named for the first importer of M. integrifolia nuts into Hawaii. Calif Macadamia Soc Yearb 27: 83-91.Google Scholar
  16. Hamilton, R.A., W.B. Storey, & E.T. Fukunaga, 1952. Two new macadamia varieties. Hawaii Agr Expt Sta Cir 36: 5 pp.Google Scholar
  17. Ito, P.J., J.E. Hunter & R.A. Hamilton, 1970. Effect of crosspollination on initial and final nut set and yields of macadamia cultivars. Proc 10th Annual Meeting of the Hawaiian Macadamia Producers Association, pp. 16-19.Google Scholar
  18. Lübberstedt, T., A.E. Melchinger, C. Dußle, M. Vuylsteke & M. Kuiper, 2000. Relationships among Early European Maize Inbreds: IV. Genetic Diversity Revealed with AFLP Markers and Comparison with RFLP, RAPD, and Pedigree Data. Crop Sci 40: 783-791.CrossRefGoogle Scholar
  19. McDonald, J.A. & R. Ismail, 1995. Macadamia erecta (Proteaceae), a new species from Sulawesi. Harvard Papers in Bot 7: 7-10.Google Scholar
  20. Kim, M.S., P.H. Moore, F. Zee, M.M.M. Fitch, D.L. Steiger, R.M. Manshardt, R.E. Paull, R.A. Drew, T. Sekioka & R. Ming, 2002. Genetic diversity of Carica papaya L. as revealed by AFLP markers. Genome 45: 503-512.PubMedCrossRefGoogle Scholar
  21. Mackill, D.J., Z. Zhang, E.D. Redona & P.M. Colowit, 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39: 969-977.PubMedGoogle Scholar
  22. McConachie, I., 1980. The macadamia story. Calif Macadamia Soc Yrbk 26: 41-74.Google Scholar
  23. Pejic, I., P. Ajmone-Marsan, M. Morgante, V. Kozumplick, P. Castiglioni, G. Taramino & M. Motto, 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97: 1248-1255.CrossRefGoogle Scholar
  24. Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey & A. Rafalski, 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2: 225-238.CrossRefGoogle Scholar
  25. Rohlf, F.J. & R.R. Sokal, 1981. Comparing numerical taxonomic studies. Systematic Zool 30: 459-490.CrossRefGoogle Scholar
  26. Rouppe van der Voort, J.N.A.M., P. van. Zandvoort, H.J. van. Eck, R.T. Folkertsma, R.C.B. Hutten, J. Draaistra, F.J. Gommers, E. Jacobsen, J. Helder & J. Bakker, 1997. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255: 438-447.PubMedCrossRefGoogle Scholar
  27. Russell, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell & R. Waugh, 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714-722.CrossRefGoogle Scholar
  28. Shigeura, G.T. & H. Ooka, 1984. Macadamia Nuts in Hawaii: History and Production. Res. Extn. Series039, Hawaii Institute of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, 91 pp.Google Scholar
  29. Smith, P.M., 1976. Macadamia nut. In: N.W. Simmonds (Ed.), Evolution of Crop Plants, pp. 319-320, Longman, London.Google Scholar
  30. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. Freeman, San Francisco, USA.Google Scholar
  31. Sokal, R.R. & C.D. Michener, 1958. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38: 1409-38.Google Scholar
  32. Steiger, D.L., C. Nagai, P.H. Moore, C.W. Morden, R.V. Osgood & R. Ming, 2002. AFLP analysis of genetic diversity within and among Coffea arabica cultivars. Theor Appl Genet 105: 209-215.PubMedCrossRefGoogle Scholar
  33. Storey, W.B., 1948. Varieties of the macadamia nut for planting in Hawaii. Hawaii Agr Expt Sta Prog Notes 51, 4 pp.Google Scholar
  34. Storey, W.B. & R.A. Hamilton, 1953. The macadamia nut industry in Hawaii. California Avocado Society Yearb: 63-67.Google Scholar
  35. Storey, W.B. & W.F. Saleeb, 1970. Interspecific hybridization in macadamia. California Macadamia Society Yearb: 7 pp.Google Scholar
  36. Vithanage, V. & C.W. Winks, 1992. Isozymes as genetic markers for Macadamia. Scientia Horticulturae 49: 103-115.CrossRefGoogle Scholar
  37. Vithanage, V. & C. Hardner, 1998. Progress made with molecular markers for genetic improvement of Macadamia. Acta horticulturae 461: 199-207.Google Scholar
  38. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA finger printing. Nucl Acids Res 23: 4407-4414.PubMedGoogle Scholar
  39. Wagner-Wright, S., 1995. History of the macadamia nut industry in Hawaii, 1881-1981. The Edwin Mellen Press, Canada.Google Scholar
  40. Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson & G.J. Bryan, 1998. AFLP markers for the study of rice biodiversity. Theor Appl Genet 96: 5, 602-611.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • D.L. Steiger
    • 1
  • P.H. Moore
    • 2
  • F. Zee
    • 3
  • Z. Liu
    • 1
  • R. Ming
    • 1
  1. 1.Hawaii Agriculture Research CenterAieaU.S.A
  2. 2.USDA-ARS, Pacific Basin Agricultural Research CenterAiea
  3. 3.USDA-ARS, PBARC, Tropical Plant Genetic Resource Management UnitHiloU.S.A

Personalised recommendations