Advertisement

Theoretical and Mathematical Physics

, Volume 136, Issue 2, pp 1049–1065 | Cite as

Cohomology of a Poisson Algebra

  • V. V. Zharinov
Article

Abstract

We propose a technique for calculating the cohomology of a Poisson algebra using the Laplace transformation of distributions with compact support. We find the lowest-order cohomologies of this algebra with coefficients in two natural representations: the trivial and the adjoint representations.

Lie algebras Poisson algebras cohomology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. Kamran and P. J. Olver, eds., Lie Algebras,Cohomology and New Applications to Quantum Mechanics (Contemp. Math., Vol. 160), Am. Math. Soc., Providence, R. I. (1994).Google Scholar
  2. 2.
    J. A. de Azcárraga, J. M. Izquierdo, and J. C. Pérez Bueno, “An introduction to some novel applications of Lie algebra cohomology in mathematics and physics,” physics/9803046 (1998).Google Scholar
  3. 3.
    M. Henneaux, J. Krasil'shchik, and A. Vinogradov, eds., Secondary Calculus and Cohomological Physics (Contemp. Math., Vol. 219), Am. Math. Soc., Providence, R. I. (1998).Google Scholar
  4. 4.
    M. Bordemann, “The deformation quantization of certain super-Poisson brackets and BRST cohomology,” math.QA/0003218 (2000); P. Monnier, “Poisson cohomology in dimension two,” math.DG/0005261 (2000); “Computation of Nambu-Poisson cohomologies,” math.DG/0007103 (2000); Z. Giunashvili, “Differential complex of Poisson manifold and distributions,” math-ph/0103038 (2001); “Noncommutative geometry of phase space,” math-ph/0203027 (2002); O. Radko, “A classification of topologicaly stable Poisson structures on a compact oriented surface,” math.SG/0110304 (2001); V. V. Kornyak, “Computation of cohomology of Lie algebra of Hamiltonian vector fields by splitting cochain complex into minimal subcomplexes,” math.NA/0205046 (2002); A. Gammella, Pacific J.Math., 203, 283-320 (2002); math.DG/0207215 (2002); J. A. de Azcárraga, J. M. Izquierdo, and J. C. Pérez Bueno, J.Phys.A, 30, L607-L616 (1997); hep-th/9703019 (1997); S. Evens and J.-H. Lu, “Poisson harmonic forms, Kostant harmonic forms, and the S 1-equivariant cohomology of K/T,” dgga/9711019 (1997); M. Penkava and P. Vanhaecke, “Deformation quantization of polynomial Poisson algebras,” math.QA/9804022 (1998).Google Scholar
  5. 5.
    V. V. Zharinov, Theor.Math.Phys., 128, 957-968 (2001).Google Scholar
  6. 6.
    N. Bourbaki, Groupes et algèbres de Lie (Chaps. 1, 2, and 3; Actualités Sci. Indust., 1285, 1349; Éléments de Mathématique, Vols. 26, 36), Hermann, Paris (1971, 1972).Google Scholar
  7. 7.
    P. Cartier, “Cohomologie des algèbres de Lie I,” in: Théorie des algèbres de Lie: Topologie des groupes de Lie (Séminaire “Sophus Lie” le annee: 1954/55), Secrétariat Mathématique, Paris (1955), pp. 3-01-3-07; “Cohomologie des algèbres de Lie II: Interprétation des groupes de cohomologie,” ibid., pp. 4-01-4-11; “Cohomologie des algèbres de Lie, III,” ibid., pp. 5-01-5-07; “Complèments sur la cohomologie,” ibid., pp. 5-08-5-10.Google Scholar
  8. 8.
    D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984); English transl., Plenum, New York (1986).Google Scholar
  9. 9.
    B. L. Feigin and D. B. Fuks, “Cohomologies of Lie groups and Lie algebras,” in: Lie Groups and Lie Algebras-2 [in Russian] (Sovrem. Probl. Mat. Fund. Naprav., Vol. 21, R. V. Gamkrelidze, ed.), VINITI, Moscow (1988); English transl. in: Lie Groups and Lie Algebras II (Ency. Math. Sci., Vol. 21, A. L. Onishchik and E. B. Vinberg, eds.), Springer, Berlin (2000).Google Scholar
  10. 10.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1, Distribution Theory and Fourier Analysis, Springer, Berlin (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. V. Zharinov
    • 1
  1. 1.Steklov Mathematical Institute, RASMoscowRussia

Personalised recommendations