Journal of Protein Chemistry

, Volume 22, Issue 3, pp 259–273 | Cite as

Environmental Influences on Bovine κ-Casein: Reduction and Conversion to Fibrillar (Amyloid) Structures

  • Harold M. FarrellJr.
  • Peter H. Cooke
  • Edward D. Wickham
  • Edwin G. Piotrowski
  • Peter D. Hoagland


The caseins of milk form a unique calcium–phosphate transport complex that provides these necessary nutrients to the neonate. The colloidal stability of these particles is primarily the result of κ-casein. As purified from milk, this protein occurs as spherical particles with a weight average molecular weight of 1.18 million. The protein exhibits a unique disulfide bonding pattern, which (in the absence of reducing agents) ranges from monomer to octamers and above on SDS-PAGE. Severe heat treatment of the κ-casein (90°C) in the absence of SDS, before electrophoresis, caused an increase in the polymeric distribution: up to 40% randomly aggregated high–molecular weight polymers, presumably promoted by free sulfhydryl groups (J. Protein Chem.17: 73–84, 1998). To ascertain the role of the sulfhydryl groups, the protein was reduced and carboxymethylated (RCM-κ). Surprisingly, at only 37°C, the RCM-κ-casein exhibited an increase in weight average molecular weight and tendency to self-association when studied at 3000 rpm by analytical ultracentrifugation. Electron microscopy (EM) of the 37°C RCM sample showed that, in addition to the spherical particles found in the native protein, there was a high proportion of fibrillar structures. The fibrillar structures were up to 600 nm in length. Circular dichroism (CD) spectroscopy was used to investigate the temperature-induced changes in the secondary structure of the native and RCM-κ-caseins. These studies indicate that there was little change in the distribution of secondary structural elements during this transition, with extended strand and κ turns predominating. On the basis of three-dimensional molecular modeling predictions, there may exist a tyrosine-rich repeated sheet-turnsheet motif in κ-casein (residues 15–65), which may allow for the stacking of the molecules into fibrillar structures. Previous studies on amyloid proteins have suggested that such motifs promote fibril formation, and near-ultraviolet CD and thioflavin-T binding studies on RCM-κ-casein support this concept. The results are discussed with respect to the role that such fibrils may play in the synthesis and secretion of casein micelles in lactating mammary gland.

Casein structure molecular weight disulfide interactions amyloid fibrils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alaimo, M. H., Wickham, E. D., and Farrell, H. M., Jr. (1999a). Biochim. Biophys. Acta 1431: 395–409.Google Scholar
  2. Alaimo, M. H., Farrell, H. M., Jr., and Germann, M. W. (1999b). Biochim. Biophys. Acta 1431: 410–420.Google Scholar
  3. Arakawa, T., and Timasheff, S. N. (1984). J. Biol. Chem. 259: 4979–4986.Google Scholar
  4. deKruif, C. G., and May, R. P. (1991). Eur. J. Biochem. 200: 431–436.Google Scholar
  5. Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Jr., Harwalkar, V. R., Jenness, R., et al. (1984). J. Dairy Sci. 67: 1599–1631.Google Scholar
  6. Farrell, H. M., Jr. (1999). In Milk, Composition and Synthesis: Encyclopedia of Reproduction, Vol. 3 (Knobil, E., and Neill, J. D., eds.), Academic Press, San Diego, CA, pp. 256–264.Google Scholar
  7. Farrell, H. M., Jr., and Thompson, M. P. (1971). J. Dairy Sci. 54: 1219–1228.Google Scholar
  8. Farrell, H. M., Jr., and Thompson, M. P. (1988). In Caseins as Calcium Binding Proteins: Calcium Binding Proteins, Vol. II (Thompson, M. P., ed.), CRC Press, Boca Raton, FL, pp. 150–181.Google Scholar
  9. Farrell, H. M., Jr., Deeney, J. T., Hild, E. K., and Kumosinski, T. F. (1990). J. Biol. Chem. 265: 17637–17643.Google Scholar
  10. Farrell, H. M., Jr., Kumosinski, T. F., Cooke, P. H., King, G., Hoagland, P. D., Wickham, E. D., et al. (1996). J. Protein Chem. 15: 435–445.Google Scholar
  11. Farrell, H. M., Jr., Wickham, E. D., Dower, H. J., Piotrowski, E. G., Hoagland, P. D., Cooke, P. H., et al. (1999). J. Protein Chem. 18: 637–652.Google Scholar
  12. Farrell, H. M., Jr., Wickham, E. D., Unruh, J. J., Qi, P. X., and Hoagland, P. D. (2001). Food Hydrocolloids 15: 417–435.Google Scholar
  13. Farrell, H. M., Jr., Qi, P. X., Brown, E. M., Cooke, P. H., Tunick, M. H., Wickham, E. D., et al. (2002a). J. Dairy Sci. 85: 459–471.Google Scholar
  14. Farrell, H. M., Jr., Qi, P. X., Wickham, E. D., and Unruh, J. J. (2002b). J. Protein Chem. 21: 307–321.Google Scholar
  15. Groves, M. L., Dower, H. J., and Farrell, H. M., Jr. (1992). J. Protein Chem. 11: 21–28.Google Scholar
  16. Groves, M. L., Wickham, E. D., and Farrell, H. M., Jr. (1998). J. Protein Chem. 17: 73–84.Google Scholar
  17. Holt, C. (1992). Adv. Protein Chem. 43: 63–151.Google Scholar
  18. Holt, J. M., and Ackers, G. K. (2001). Protein Sci. 10: S2, 29.Google Scholar
  19. Horne, D. (1984). J. Colloid Interface Sci. 98: 537–542.Google Scholar
  20. Kumosinski, T. F., and Unruh, J. J. (1996). Talanta 43: 199–219.Google Scholar
  21. Kumosinski, T. F., Brown, E. M., and Farrell, H. M., Jr. (1993). J. Dairy Sci. 76: 2507–2520.Google Scholar
  22. Kumosinski, T. F., King, G., and Farrell, H. M., Jr. (1994). J. Protein Chem. 13: 681–699.Google Scholar
  23. McKenzie, H. A., and Wake, R. G. (1961). Biochim. Biophys. Acta 47: 240–242.Google Scholar
  24. Mercier, J. C., Brignon, G., and Ribadeau-Dumas, B. (1973). Eur. J. Biochem. 35: 222–235.Google Scholar
  25. Pepper, L., and Farrell, H. M., Jr. (1982). J. Dairy Sci. 65: 2259–2266.Google Scholar
  26. Provencher, S. W., and Glöckner, J. M. (1981). Biochemistry 20: 33–37.Google Scholar
  27. Rasmussen, L. K., Højrup, P., and Petersen, T. E. (1992). Eur. J. Biochem. 207: 215–222.Google Scholar
  28. Rusling, J. F., and Kumosinski, T. F. (1996). Nonlinear Computer Modeling of Chemical and Biochemical Data, Academic Press, San Diego, CA.Google Scholar
  29. Schechter, Y., Patchornik, A., and Burstein, Y. (1973). Biochemistry 12: 3407–3413.Google Scholar
  30. Schmidt, D. G. (1982). In Developments in Dairy Chemistry, Vol. 1, Proteins (Fox, P. F., ed.), Applied Science, Essex, UK, pp. 61–86.Google Scholar
  31. Slattery, C. W., and Evard, R. (1973). Biochim. Biophys. Acta 317: 529–538.Google Scholar
  32. Sreerama, N., and Woody, R. W. (1993). Anal. Biochem. 209: 32–44.Google Scholar
  33. Sunde, M., and Blake, C. (1997). Adv. Protein Chem. 50: 123–159.Google Scholar
  34. Swaisgood, H. E. (1982). In Developments in Dairy Chemistry, Vol. 1, Proteins (Fox, P. F., ed.), Applied Science, Essex, UK, pp. 1–59.Google Scholar
  35. Thurn, A., Blanchard, W., and Niki, R. (1987). Colloid Polym. Sci. 265: 653–666.Google Scholar
  36. Vreeman, H. J., Brinkhaus, J. A., and Vanderspek, C. A. (1981). Biophys. Chem. 14: 185–193.Google Scholar
  37. Vreeman, H. J., Visser, S., Slangen, C. J., and Van Riel, A. (1986). Biochem. J. 240: 87–97.Google Scholar
  38. Waugh, D. F., and Von Hippel, P. H. (1956). J. Am. Chem. Soc. 78: 4576–4582.Google Scholar
  39. Weber, K., and Osborn, M. (1969). J. Biol. Chem. 244: 4406–4409.Google Scholar
  40. Wetzel, R. (1997). Adv. Protein Chem. 50: 183–242.Google Scholar
  41. Wyman, G., Jr. (1964). Adv. Protein Chem. 19: 223–286.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Harold M. FarrellJr.
    • 1
  • Peter H. Cooke
    • 1
  • Edward D. Wickham
    • 1
  • Edwin G. Piotrowski
    • 1
  • Peter D. Hoagland
    • 1
  1. 1.United States Department of Agriculture, ARSEastern Regional Research CenterWyndmoor

Personalised recommendations