Advertisement

Journal of Autism and Developmental Disorders

, Volume 33, Issue 4, pp 443–448 | Cite as

Lower Cortisol and Higher ACTH Levels in Individuals with Autism

  • Jasna Marinović Ćurin
  • Janoš TerzićEmail author
  • Zorana Bujas Petković
  • Ljubinka Zekan
  • Ivana Marinović Terzić
  • Ivana Marasović Šušnjara
Article

Abstract

Blood concentrations of pituitary hormones adrenocorticotropin (ACTH), prolactin, growth hormone, and adrenal hormone–cortisol were measured in 36 autistic and 27 control individuals. Individuals with autism had significantly lower serum concentrations of cortisol (p < 10−6), and significantly higher concentrations of ACTH (p = 0.002) than control age- and sex-matched subjects. Also, prolactin concentrations in autistic patients with epilepsy were significantly higher when compared with normal subjects. The observed hormonal changes may indicate dysfunction of the hypothalamo-pituitary-adrenal axis in individuals with autism.

Autism cortisol ACTH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed., rev.). Washington, DC: Author.Google Scholar
  2. Aylward, E. H., Minshev, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., Barta, P. E., & Pearlson, G. D. (1999). MRI volumes of amygdala and hippocampus in nonmentally retarded autistic adolescents and adults. Neurology, 53, 2145–2150.PubMedGoogle Scholar
  3. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impair recognition of emotion in facial expressions following billateral damage to the human amygdala. Nature, 372, 669–672.CrossRefPubMedGoogle Scholar
  4. Bailey, A., Phillips, W., & Rutter, M. (1996). Autism: Towards an integration of clinical, genetic, neuropsychological and neurobiological perspectives. Journal of Child Psychology and Psychiatry, 37, 89–126.PubMedGoogle Scholar
  5. Bailey, A., LeCouteur, A., Gottesman, I., Bolton, P., Smonoff, E., Yuzda, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–78.PubMedGoogle Scholar
  6. Bauman, M. L. (1991). Microscopic neuroanatomic abnormalities in autism. Pediatrics, 87, 791–796.PubMedGoogle Scholar
  7. Bouvard, M. P., Leboyer, M., Launay, J. M., Recasens, C., Plumet, M., Waller-Perotte, D., Tabateau, F., Bondoux, D., Dugas, M., Lensing, P., & Panksepp, J. (1995). Low-dose naltrexone effects on plasma chemistries and clinical symptoms in autism: Adouble blind, placebo-controled study. Psychiatry Research, 58, 191–201.CrossRefPubMedGoogle Scholar
  8. Brambilla, F., Viani, F., & Rossoti, V. (1969). Endocrine aspects of child psychosis. Diseases of Nervous System, 30, 627–632.Google Scholar
  9. Dawson, G. (2001). The search for autism's roots. Nature, 411, 882–884.CrossRefPubMedGoogle Scholar
  10. Freeman, W. J. (1997). Neurohumoral brain dynamics of social group formation. Implications for autism. Annales of New York Academic Sciences, 807, 501–503.Google Scholar
  11. Gingel, K., Parmar, R., & Sungum-Paliwal, S. (1996). Autism and multiple pituitary deficiency. Developmental Medicine and Child Neurology, 38, 545–549.PubMedGoogle Scholar
  12. Gispen-de Wied, C. C., Jansen, L. M., Duyx, J. H., Thijssen, J. H., & van Engeland, H. (2000). Pituitary-adrenal function in adolescent psychiatric patients: Impact of depressive symptoms. Journal of Affective Disorders, 59, 71–76.CrossRefPubMedGoogle Scholar
  13. Goodwin, M. S., Cowen, M. A., & Goodwin, T. C. (1971). Malabsorption and cerebral dysfunction; a multivariante and comparative study of autistic children. Journal of Autism and Childhood Schizophreny, 1, 48–62.Google Scholar
  14. Harrison, T. R. (1994). Principles of internal medicine. (13rd ed.). New York: McGraw-Hill, inc.Google Scholar
  15. Hashimoto, T., Tayama, M., Miyazaki, M., Yoneda, Y., Yoshimoto, T., Harada, M., Miyoshi, H., Tanouchi, M., & Kuroda, Y. (1997). Differences in brain metabolites between patients with autism and mental retardation as detected by in vivo localized proton magnetic resonance spectroscopy. Journal of Child Neurology, 12, 91–96.PubMedGoogle Scholar
  16. Herman, B. H., Arthur-Smith, A., Hammock, M. K., & Josephs, S. (1988). Ontogeny of beta–endorphin and cortisol in plasma of children and adolescents. Journal of Clinical Endocrinology and Metabolism, 67, 186–189.PubMedGoogle Scholar
  17. Hill, S. D., Wagner, E. A., Shedlarski, J. G., Jr., & Sears, S. P. (1977). Diurnal cortisol and temperature variation of normal and autistic children. Developmental Psychobiology, 10, 579–583.PubMedGoogle Scholar
  18. Hoshino, Y., Yokoyama, F., Hashimoto, S., Murata, S., Kaneko, M., & Kumashirao, H. (1989). The diurnal rhythm and the response to Dexamethasone suppression test of saliva cortisol level in autistic children. Neurosciences, 15, 25–34.Google Scholar
  19. Insel, T. R. (1997). A neurobiological basis of social attachment. American Journal of Psychiatry, 154, 726–735.PubMedGoogle Scholar
  20. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. (5th ed). New York: McGraw-Hill.Google Scholar
  21. Kirkwood, B. R. (1988). Essential medical statistic. (1rd ed.). Oxford: Blackwill Scientific Publications.Google Scholar
  22. Konstantareas, M. M., & Homatidis, S. (1999). Chromosomal abnormalities in serias of children with autistic disorder. Journal of Autism and Developmental Disorders, 29, 275–285.CrossRefPubMedGoogle Scholar
  23. Leboyer, M., Bouvard, M. P., Launay, J. M., Tabateau, D., Waller, D., Dugas, M., Kerdelhue, B., Lensing, P., & Penksenpp, J. (1992). Brief report: A double-blind study of naltrexone in infantile autism. Journal of Autism and Developmental Disorders, 22, 309–319.PubMedGoogle Scholar
  24. Leboyer, M., Bouvard, M. P., Recasens, C., Philippe, A., Guilloud-Bastile, M. F., Bondoux, D., Tabateau, D., Dugas, M., Lensing, P., Penksenpp, J., & Launay, J. M. (1994). Difference between plasma N-and C-terminally directed β-endorphin immunoreactivity in infantile autism. American Journal of Psychiatry, 151, 1797–1810.PubMedGoogle Scholar
  25. Maher, K. R., Harper, J. F., Macleay, A., & King, M. G. (1975). Peculiarities in endocrine response to insulin stress in early infantile autism. Journal of Nervous and Mental Disorders, 161, l80-l84.Google Scholar
  26. McBride, P. A., Anderson, G. M., Hertzig, M. E., Sweeney, J. A., Kream, J., Cohen, D. J., & Mann, J. J. (1989). Serotonergic responsivity in male young adults with autistic disorder. Results of a pilot study. Archives of General Psychiatry, 46, 213–221.PubMedGoogle Scholar
  27. Modahl, C., Green, L., Fein, D., Morris, M., & Waterhouse, L. (1998). Plasma oxytocin levels in autistic children. Biological Psychiatry, 43, 270–277.CrossRefPubMedGoogle Scholar
  28. Nir, I., Meir, D., Zilber, N., Knobler, H., Hadjez, J., & Lerner, Y. (1995). Brief report: Circadian melatonin, thyroid-stimulating hormone, prolactin, and cortison levels in serum of young adults with autism. Journal of Autism and Developmental Disorders, 25, 641–654.PubMedGoogle Scholar
  29. Raja, M., Azzoni, A., & Giammarco, V. (1998). Diabetes insipidus and polydipsia in a patient with Aspergers disorder and an empty sella: A case report. Journal of Autism and Developmental Disorders, 28, 235–239.CrossRefPubMedGoogle Scholar
  30. Richdale, A. L., & Prior, M. R. (1992). Urinary cortisol circadian rhythm in a group of high-functioning children with autism. Journal of Autism and Developmental Disorders, 22, 433–447.PubMedGoogle Scholar
  31. Sandman, C. A., Barron, J. L., Chiez-DeMet, A., & DeMet, E. M. (1991). Brief report: Plasma beta–endorpfin and cortisol levels in autistic patients. Journal of Autism and Developmental Disorders, 21, 83–87.PubMedGoogle Scholar
  32. Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273, 749–750.PubMedGoogle Scholar
  33. Sequera, S. (2001). Complex role for genetics in autism. Trends in Neurosciences, 24, 634–635.Google Scholar
  34. Stokstad, E. (2001). New hints into the biological basis of Autism. Science, 294, 34–37.CrossRefPubMedGoogle Scholar
  35. Tordjman, S., Anderson, G. M., McBride, P. A., Hertzing, M. E., Snow, M. E., Hall, L. M., Thompson, S. M., & Ferrari, P. (1997). Plasma beta-endorfin, adrenocorticotropin hormone, and cortisol in autism. Journal of Child Psychology and Psychiatry, 38, 705–715.PubMedGoogle Scholar
  36. Van Heringen, K., Audenaert, K., Van De Viele, L., & Verstraete, A. (2000). Cortisol in violent behavior: Association with personality and monoaminergic activity. Journal of Affective Disorders, 60, 181–189.CrossRefPubMedGoogle Scholar
  37. Yehuda, R., Bierer, L. M., Schmeidler, J., Aferiat, D. H., Breslau, I., & Dolan, S. (2000). Low cortisol and risk for PTSD in adult offspring of holocaust survivors. American Journal of Psychiatry, 157, 1252–1259.CrossRefPubMedGoogle Scholar
  38. Waterhouse, L., Fein, D., & Modahl, C. (1996). Neurofunctional mechanisms in autism. Psychological Review, 103, 457–489.CrossRefPubMedGoogle Scholar
  39. Wechsler, D. (1989). Manual for the Wechsler Preschool and Primary Scale of Intelligence-Revised. San Antonio, TX: Psychological Corp.Google Scholar
  40. World Health Organization. (1993). International classification of diseases (10th ed.). Geneva: World Health Organization.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Jasna Marinović Ćurin
    • 1
  • Janoš Terzić
    • 2
    Email author
  • Zorana Bujas Petković
    • 3
  • Ljubinka Zekan
    • 4
  • Ivana Marinović Terzić
    • 2
  • Ivana Marasović Šušnjara
    • 1
  1. 1.School of MedicineUniversity of SplitSplitCroatia
  2. 2.Department of Physiology, School of MedicineUniversity of SplitSplitCroatia
  3. 3.Center for AutismZagrebCroatia
  4. 4.Department of Nuclear MedicineClinical Hospital, SplitSplitCroatia

Personalised recommendations